Phosphorus removal from swine wastewater using aluminum-based water treatment residuals

Q1 Economics, Econometrics and Finance Resources, Conservation and Recycling: X Pub Date : 2020-05-01 DOI:10.1016/j.rcrx.2020.100039
Travis Banet , Michael S. Massey , Iris Zohar , M. Iggy Litaor , James A. Ippolito
{"title":"Phosphorus removal from swine wastewater using aluminum-based water treatment residuals","authors":"Travis Banet ,&nbsp;Michael S. Massey ,&nbsp;Iris Zohar ,&nbsp;M. Iggy Litaor ,&nbsp;James A. Ippolito","doi":"10.1016/j.rcrx.2020.100039","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminum water treatment residuals (Al-WTR), a waste product created during drinking water treatment, is generated in large quantities globally and typically landfilled; alternative, uses are desperately required. Inorganic phosphorus (P) is proven to be quickly and irreversibly sorbed by Al-WTR, rendering P unavailable for subsequent environmental use.</p><p>However, little work has been done to characterize how Al-WTR interacts with organic P sources (e.g., wastewaters) to both sorb and later release P. Experiments characterized Al-WTR's ability sorb and subsequently desorb swine wastewater organic P, and to ascertain Al-WTR's potential for agricultural wastewater treatment and to return organic P to systems (e.g., soils) for beneficial use. Al-WTRs were shaken with swine wastewater (2.5:1;w/w) and solution total/inorganic/organic P were monitored over 21 days. The Al-WTR sorbed almost 100% (~ 16,500 mg kg<sup>−1</sup>) of swine wastewater organic P within a 1-h timeframe. X-ray absorption near-edge spectroscopy showed that P was primarily sorbed by Ca phases present in Al-WTR during the initial 1-h sorption phase. In a subsequent study, the newly generated organic P-laden Al-WTR was shaken in 0.01M KCl along with an anion membrane-probe to capture desorbed P. Approximately 17% (~ 3000 mg kg<sup>−1</sup>) of the organic P sorbed onto Al-WTR was desorbed. Findings suggest that Al-WTR can remove excessive organic P from agricultural waste streams, with the Al-WTR-organic P-containing material potentially having the ability to supplement agricultural soils with P for plant use. By following such an approach, this could provide municipalities with an alternative and beneficial utilization strategy as compared to landfilling.</p></div>","PeriodicalId":36714,"journal":{"name":"Resources, Conservation and Recycling: X","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rcrx.2020.100039","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources, Conservation and Recycling: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590289X20300104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 5

Abstract

Aluminum water treatment residuals (Al-WTR), a waste product created during drinking water treatment, is generated in large quantities globally and typically landfilled; alternative, uses are desperately required. Inorganic phosphorus (P) is proven to be quickly and irreversibly sorbed by Al-WTR, rendering P unavailable for subsequent environmental use.

However, little work has been done to characterize how Al-WTR interacts with organic P sources (e.g., wastewaters) to both sorb and later release P. Experiments characterized Al-WTR's ability sorb and subsequently desorb swine wastewater organic P, and to ascertain Al-WTR's potential for agricultural wastewater treatment and to return organic P to systems (e.g., soils) for beneficial use. Al-WTRs were shaken with swine wastewater (2.5:1;w/w) and solution total/inorganic/organic P were monitored over 21 days. The Al-WTR sorbed almost 100% (~ 16,500 mg kg−1) of swine wastewater organic P within a 1-h timeframe. X-ray absorption near-edge spectroscopy showed that P was primarily sorbed by Ca phases present in Al-WTR during the initial 1-h sorption phase. In a subsequent study, the newly generated organic P-laden Al-WTR was shaken in 0.01M KCl along with an anion membrane-probe to capture desorbed P. Approximately 17% (~ 3000 mg kg−1) of the organic P sorbed onto Al-WTR was desorbed. Findings suggest that Al-WTR can remove excessive organic P from agricultural waste streams, with the Al-WTR-organic P-containing material potentially having the ability to supplement agricultural soils with P for plant use. By following such an approach, this could provide municipalities with an alternative and beneficial utilization strategy as compared to landfilling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用铝基水处理残渣去除养猪废水中的磷
铝水处理残渣(Al-WTR)是饮用水处理过程中产生的废物,在全球范围内大量产生,通常被填埋;迫切需要其他用途。无机磷(P)被Al-WTR快速和不可逆地吸收,使P无法用于后续的环境利用。然而,关于Al-WTR如何与有机P源(如废水)相互作用以吸收和释放P的研究很少。实验表征了Al-WTR吸附并随后解吸猪废水有机P的能力,并确定了Al-WTR在农业废水处理中的潜力,并将有机P返回系统(如土壤)以供有益利用。用猪废水(2.5:1;w/w)振荡Al-WTRs,并在21 d内监测溶液中总磷/无机磷/有机磷。在1 h的时间内,Al-WTR几乎100% (~ 16,500 mg kg−1)地吸附了猪废水中的有机磷。x射线吸收近边光谱分析表明,在最初的1-h吸附阶段,P主要被Al-WTR中存在的Ca相吸附。在随后的研究中,将新生成的有机P-负载Al-WTR与阴离子膜探针一起在0.01M KCl中振荡以捕获解吸P,大约17% (~ 3000 mg kg - 1)的有机P被解吸到Al-WTR上。研究结果表明,Al-WTR可以从农业废物流中去除过量的有机磷,Al-WTR-有机含磷物质可能具有向农业土壤补充磷供植物利用的能力。通过采用这种方法,与填埋相比,这可以为市政当局提供另一种有益的利用战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Resources, Conservation and Recycling: X
Resources, Conservation and Recycling: X Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
14.50
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊最新文献
Reconfiguring repair: Contested politics and values of repair challenge instrumental discourses found in circular economies literature WITHDRAWN: Development of an Input-output model for Food-Energy-Water Nexus in the Pacific Northwest, USA The re-direction of small deposit mining: Technological solutions for raw materials supply security in a whole systems context WITHDRAWN: Insights from combining techno-economic and life cycle assessment - a case study of polyphenol extraction from red wine pomace Being shown samples of composted, granulated faecal sludge strongly influences acceptability of its use in peri-urban subsistence agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1