Eun Young Choi , Seung Hoon Han , Ik Hee Ryu , Jin Kuk Kim , In Sik Lee , Eoksoo Han , Hyungsu Kim , Joon Yul Choi , Tae Keun Yoo
{"title":"Automated detection of crystalline retinopathy via fundus photography using multistage generative adversarial networks","authors":"Eun Young Choi , Seung Hoon Han , Ik Hee Ryu , Jin Kuk Kim , In Sik Lee , Eoksoo Han , Hyungsu Kim , Joon Yul Choi , Tae Keun Yoo","doi":"10.1016/j.bbe.2023.10.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Crystalline retinopathy is characterized by reflective crystal deposits in the macula and is caused by various systemic conditions including hereditary, toxic, and embolic etiologies. Herein, we introduce a novel application of deep learning with a multistage generative adversarial network (GAN) to detect crystalline retinopathy using fundus photography.</p></div><div><h3>Methods</h3><p>The dataset comprised major classes (healthy retina, diabetic retinopathy, exudative age-related macular degeneration, and drusen) and a crystalline retinopathy class (minor set). To overcome the limited data on crystalline retinopathy, we proposed a novel multistage GAN framework. The GAN was retrained after CutMix combination by inputting the GAN-generated synthetic data as new inputs to the original training data. After the multistage CycleGAN augmented the data for crystalline retinopathy, we built a deep-learning classifier model for detection.</p></div><div><h3>Results</h3><p>Using the multistage CycleGAN facilitated realistic fundus photography synthesis with the characteristic features of retinal crystalline deposits. The proposed method outperformed typical transfer learning, prototypical networks, and knowledge distillation for both multiclass and binary classifications. The final model achieved an area under the curve of the receiver operating characteristics of 0.962 for internal validation and 0.987 for external validation for the detection of crystalline retinopathy.</p></div><div><h3>Conclusion</h3><p>We introduced a deep learning approach for detecting crystalline retinopathy, a potential biomarker of underlying systemic pathological conditions. Our approach enables realistic pathological image synthesis and more accurate prediction of crystalline retinopathy, an essential but minor retinal condition.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"43 4","pages":"Pages 725-735"},"PeriodicalIF":5.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521623000591","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Crystalline retinopathy is characterized by reflective crystal deposits in the macula and is caused by various systemic conditions including hereditary, toxic, and embolic etiologies. Herein, we introduce a novel application of deep learning with a multistage generative adversarial network (GAN) to detect crystalline retinopathy using fundus photography.
Methods
The dataset comprised major classes (healthy retina, diabetic retinopathy, exudative age-related macular degeneration, and drusen) and a crystalline retinopathy class (minor set). To overcome the limited data on crystalline retinopathy, we proposed a novel multistage GAN framework. The GAN was retrained after CutMix combination by inputting the GAN-generated synthetic data as new inputs to the original training data. After the multistage CycleGAN augmented the data for crystalline retinopathy, we built a deep-learning classifier model for detection.
Results
Using the multistage CycleGAN facilitated realistic fundus photography synthesis with the characteristic features of retinal crystalline deposits. The proposed method outperformed typical transfer learning, prototypical networks, and knowledge distillation for both multiclass and binary classifications. The final model achieved an area under the curve of the receiver operating characteristics of 0.962 for internal validation and 0.987 for external validation for the detection of crystalline retinopathy.
Conclusion
We introduced a deep learning approach for detecting crystalline retinopathy, a potential biomarker of underlying systemic pathological conditions. Our approach enables realistic pathological image synthesis and more accurate prediction of crystalline retinopathy, an essential but minor retinal condition.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.