In vitro investigations of Staphylococcus aureus biofilms in physiological fluids suggest that current antibiotic delivery systems may be limited.

IF 3.2 3区 医学 Q3 CELL & TISSUE ENGINEERING European cells & materials Pub Date : 2022-02-02 DOI:10.22203/eCM.v043a03
S Isguven, K Fitzgerald, L J Delaney, M Harwood, T P Schaer, N J Hickok
{"title":"In vitro investigations of Staphylococcus aureus biofilms in physiological fluids suggest that current antibiotic delivery systems may be limited.","authors":"S Isguven, K Fitzgerald, L J Delaney, M Harwood, T P Schaer, N J Hickok","doi":"10.22203/eCM.v043a03","DOIUrl":null,"url":null,"abstract":"<p><p>Orthopaedic surgical site infections, especially when a hardware is involved, are associated with biofilm formation. Clinical strategies for biofilm eradication still fall short. The present study used a novel animal model of long-bone fixation with vancomycin- or gentamicin-controlled release and measured the levels of antibiotic achieved at the site of release and in the surrounding tissue. Then, using fluids that contain serum proteins (synovial fluid or diluted serum), the levels of vancomycin or gentamicin required to substantially reduce colonising bacteria were measured in a model representative of either prophylaxis or established biofilms. In the in vivo model, while the levels immediately adjacent to the antibiotic release system were up to 50× the minimal inhibitory concentration in the first 24 h, they rapidly dropped. At peripheral sites, values never reached these levels. In the in vitro experiments, Staphylococcus aureus biofilms formed in serum or in synovial fluid showed a 5-10 fold increase in antibiotic tolerance. Importantly, concentrations required were much higher than those achieved in the local delivery systems. Finally, the study determined that the staged addition of vancomycin and gentamicin was not more efficacious than simultaneous vancomycin and gentamicin administration when using planktonic bacteria. On the other hand, for biofilms, the staged addition seemed more efficacious than adding the antibiotics simultaneously. Overall, data showed that the antibiotics' concentrations near the implant in the animal model fall short of the concentrations required to eradicate biofilms formed in either synovial fluid or serum.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"43 ","pages":"6-21"},"PeriodicalIF":3.2000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043781/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European cells & materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22203/eCM.v043a03","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Orthopaedic surgical site infections, especially when a hardware is involved, are associated with biofilm formation. Clinical strategies for biofilm eradication still fall short. The present study used a novel animal model of long-bone fixation with vancomycin- or gentamicin-controlled release and measured the levels of antibiotic achieved at the site of release and in the surrounding tissue. Then, using fluids that contain serum proteins (synovial fluid or diluted serum), the levels of vancomycin or gentamicin required to substantially reduce colonising bacteria were measured in a model representative of either prophylaxis or established biofilms. In the in vivo model, while the levels immediately adjacent to the antibiotic release system were up to 50× the minimal inhibitory concentration in the first 24 h, they rapidly dropped. At peripheral sites, values never reached these levels. In the in vitro experiments, Staphylococcus aureus biofilms formed in serum or in synovial fluid showed a 5-10 fold increase in antibiotic tolerance. Importantly, concentrations required were much higher than those achieved in the local delivery systems. Finally, the study determined that the staged addition of vancomycin and gentamicin was not more efficacious than simultaneous vancomycin and gentamicin administration when using planktonic bacteria. On the other hand, for biofilms, the staged addition seemed more efficacious than adding the antibiotics simultaneously. Overall, data showed that the antibiotics' concentrations near the implant in the animal model fall short of the concentrations required to eradicate biofilms formed in either synovial fluid or serum.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对生理液体中金黄色葡萄球菌生物膜的体外研究表明,目前的抗生素输送系统可能存在局限性。
骨科手术部位感染,尤其是涉及硬件时,与生物膜的形成有关。消除生物膜的临床策略仍然不足。本研究使用了一种新型动物模型,即万古霉素或庆大霉素控制释放的长骨固定,并测量了释放部位和周围组织的抗生素水平。然后,利用含有血清蛋白的液体(滑膜液或稀释血清),在一个代表预防性或已形成生物膜的模型中测量了大幅减少定植细菌所需的万古霉素或庆大霉素水平。在体内模型中,虽然紧邻抗生素释放系统的浓度在最初 24 小时内高达最小抑菌浓度的 50 倍,但随后迅速下降。在外围部位,数值从未达到上述水平。在体外实验中,在血清或滑液中形成的金黄色葡萄球菌生物膜对抗生素的耐受性提高了 5-10 倍。重要的是,所需的浓度远高于局部给药系统所达到的浓度。最后,研究确定,在使用浮游细菌时,分阶段添加万古霉素和庆大霉素并不比同时使用万古霉素和庆大霉素更有效。另一方面,对于生物膜,分阶段添加似乎比同时添加抗生素更有效。总之,数据显示,动物模型中植入物附近的抗生素浓度达不到根除滑液或血清中形成的生物膜所需的浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European cells & materials
European cells & materials 生物-材料科学:生物材料
CiteScore
6.00
自引率
6.50%
发文量
55
审稿时长
1.5 months
期刊介绍: eCM provides an interdisciplinary forum for publication of preclinical research in the musculoskeletal field (Trauma, Maxillofacial (including dental), Spine and Orthopaedics). The clinical relevance of the work must be briefly mentioned within the abstract, and in more detail in the paper. Poor abstracts which do not concisely cover the paper contents will not be sent for review. Incremental steps in research will not be entertained by eCM journal.Cross-disciplinary papers that go across our scope areas are welcomed.
期刊最新文献
Notochordal cell-derived matrix inhibits MAPK signaling in the degenerative disc environment Relationship between microscale shear modulus, composition, and structure in porcine, canine, and human temporomandibular-joint cartilage: relevance to disease and degeneration Treatment of volumetric muscle loss in female rats with biomimetic sponges Creating tissue with intervertebral disc-like characteristics using gdf5 functionalized silk scaffolds and human mesenchymal stromal cells Development of a 3D-printed bioabsorbable composite scaffold with mechanical properties suitable for treating large, load-bearingarticular cartilage defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1