Christoph Weisser , Friederike Lenel , Yao Lu , Krisztina Kis-Katos , Thomas Kneib
{"title":"Using solar panels for business purposes: Evidence based on high-frequency power usage data","authors":"Christoph Weisser , Friederike Lenel , Yao Lu , Krisztina Kis-Katos , Thomas Kneib","doi":"10.1016/j.deveng.2021.100074","DOIUrl":null,"url":null,"abstract":"<div><p>Access to electricity is typically the main benefit associated with solar panels, but in economically less developed countries, where access to electricity is still very limited, solar panel systems can also serve as means to generate additional income and to diversify income sources. We analyze high-frequency electricity usage and repayment data of around 70,000 households in Tanzania that purchased a solar panel system on credit, in order to (1) determine the extent to which solar panel systems are used for income generation, and (2) explore the link between the usage of the solar system for business purposes and the repayment of the customer credit that finances its purchase. Based on individual patterns of energy consumption within each day, we use XGBoost as a supervised machine learning model combined with labels from a customer survey on business usage to generate out-of-sample predictions of the daily likelihood that customers operate a business. We find a low average predicted business probability; yet there is considerable variation across households and over time. While the majority of households are predicted to use their system primarily for private consumption, our findings suggest that a substantial proportion uses it for income generation purposes occasionally. Our subsequent statistical analysis regresses the occurrence of individual credit delinquency within each month on the monthly average predicted probability of business-like electricity usage, relying on a time-dependent proportional hazards model. Our results show that customers with more business-like electricity usage patterns are significantly less likely to face repayment difficulties, suggesting that using the system to generate additional income can help to alleviate cash constraints and prevent default.</p></div>","PeriodicalId":37901,"journal":{"name":"Development Engineering","volume":"6 ","pages":"Article 100074"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352728521000166/pdfft?md5=0da788c28410032f6fac2d2ae43dd213&pid=1-s2.0-S2352728521000166-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352728521000166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0
Abstract
Access to electricity is typically the main benefit associated with solar panels, but in economically less developed countries, where access to electricity is still very limited, solar panel systems can also serve as means to generate additional income and to diversify income sources. We analyze high-frequency electricity usage and repayment data of around 70,000 households in Tanzania that purchased a solar panel system on credit, in order to (1) determine the extent to which solar panel systems are used for income generation, and (2) explore the link between the usage of the solar system for business purposes and the repayment of the customer credit that finances its purchase. Based on individual patterns of energy consumption within each day, we use XGBoost as a supervised machine learning model combined with labels from a customer survey on business usage to generate out-of-sample predictions of the daily likelihood that customers operate a business. We find a low average predicted business probability; yet there is considerable variation across households and over time. While the majority of households are predicted to use their system primarily for private consumption, our findings suggest that a substantial proportion uses it for income generation purposes occasionally. Our subsequent statistical analysis regresses the occurrence of individual credit delinquency within each month on the monthly average predicted probability of business-like electricity usage, relying on a time-dependent proportional hazards model. Our results show that customers with more business-like electricity usage patterns are significantly less likely to face repayment difficulties, suggesting that using the system to generate additional income can help to alleviate cash constraints and prevent default.
Development EngineeringEconomics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
4.90
自引率
0.00%
发文量
11
审稿时长
31 weeks
期刊介绍:
Development Engineering: The Journal of Engineering in Economic Development (Dev Eng) is an open access, interdisciplinary journal applying engineering and economic research to the problems of poverty. Published studies must present novel research motivated by a specific global development problem. The journal serves as a bridge between engineers, economists, and other scientists involved in research on human, social, and economic development. Specific topics include: • Engineering research in response to unique constraints imposed by poverty. • Assessment of pro-poor technology solutions, including field performance, consumer adoption, and end-user impacts. • Novel technologies or tools for measuring behavioral, economic, and social outcomes in low-resource settings. • Hypothesis-generating research that explores technology markets and the role of innovation in economic development. • Lessons from the field, especially null results from field trials and technical failure analyses. • Rigorous analysis of existing development "solutions" through an engineering or economic lens. Although the journal focuses on quantitative, scientific approaches, it is intended to be suitable for a wider audience of development practitioners and policy makers, with evidence that can be used to improve decision-making. It also will be useful for engineering and applied economics faculty who conduct research or teach in "technology for development."