Epilithic biofilms, POCIS, and water samples as complementary sources of information for a more comprehensive view of aquatic contamination by pesticides and pharmaceuticals in southern Brazil.
Danilo Rheinheimer Dos Santos, Marília Camotti Bastos, José Augusto Monteiro De Castro Lima, Thibaut Le Guet, Jocelina Vargas Brunet, Gracieli Fernandes, Renato Zanella, Osmar Damian Prestes, Leslie Mondamert, Jérôme Labanowski
{"title":"Epilithic biofilms, POCIS, and water samples as complementary sources of information for a more comprehensive view of aquatic contamination by pesticides and pharmaceuticals in southern Brazil.","authors":"Danilo Rheinheimer Dos Santos, Marília Camotti Bastos, José Augusto Monteiro De Castro Lima, Thibaut Le Guet, Jocelina Vargas Brunet, Gracieli Fernandes, Renato Zanella, Osmar Damian Prestes, Leslie Mondamert, Jérôme Labanowski","doi":"10.1080/03601234.2023.2182583","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial-temporal monitoring of the presence of pesticides and pharmaceuticals in water requires rigor in the choice of matrix to be analyzed. The use of matrices, isolated or combined, may better represent the real state of contamination. In this sense, the present work contrasted the effectiveness of using epilithic biofilms with active water sampling and with a passive sampler-POCIS. A watershed representative of South American agriculture was monitored. Nine sites with different rural anthropic pressures (natural forest, intensive use of pesticides, and animal waste), and urban areas without sewage treatment, were monitored. Water and epilithic biofilms were collected during periods of intensive pesticide and animal waste application. After the harvest of the spring/summer crop, a period of low agrochemical input, the presence of pesticides and pharmaceuticals was monitored using the POCIS and epilithic biofilms. The spot water sampling leads to underestimation of the level of contamination of water resources as it does not allow discrimination of different anthropic pressures in rural areas. The use of endogenous epilithic biofilms as a matrix for the analysis of pesticides and pharmaceuticals is a viable and highly recommended alternative to diagnose the health of water sources, especially if associated with the use of POCIS.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03601234.2023.2182583","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial-temporal monitoring of the presence of pesticides and pharmaceuticals in water requires rigor in the choice of matrix to be analyzed. The use of matrices, isolated or combined, may better represent the real state of contamination. In this sense, the present work contrasted the effectiveness of using epilithic biofilms with active water sampling and with a passive sampler-POCIS. A watershed representative of South American agriculture was monitored. Nine sites with different rural anthropic pressures (natural forest, intensive use of pesticides, and animal waste), and urban areas without sewage treatment, were monitored. Water and epilithic biofilms were collected during periods of intensive pesticide and animal waste application. After the harvest of the spring/summer crop, a period of low agrochemical input, the presence of pesticides and pharmaceuticals was monitored using the POCIS and epilithic biofilms. The spot water sampling leads to underestimation of the level of contamination of water resources as it does not allow discrimination of different anthropic pressures in rural areas. The use of endogenous epilithic biofilms as a matrix for the analysis of pesticides and pharmaceuticals is a viable and highly recommended alternative to diagnose the health of water sources, especially if associated with the use of POCIS.