{"title":"Experiment-based calibration in psychology: Optimal design considerations","authors":"Dominik R. Bach","doi":"10.1016/j.jmp.2023.102818","DOIUrl":null,"url":null,"abstract":"<div><p>Psychological theories are often formulated at the level of latent, not directly observable, variables. Empirical measurement of latent variables ought to be valid. Classical psychometric validity indices can be difficult to apply in experimental contexts. A complementary validity index, termed retrodictive validity, is the correlation of theory-derived predicted scores with actually measured scores, in specifically designed calibration experiments. In the current note, I analyse how calibration experiments can be designed to maximise the information garnered and specifically, how to minimise the sample variance of retrodictive validity estimators. First, I harness asymptotic limits to analytically derive different distribution features that impact on estimator variance. Then, I numerically simulate various distributions with combinations of feature values. This allows deriving recommendations for the distribution of predicted values, and for resource investment, in calibration experiments. Finally, I highlight cases in which a misspecified theory is particularly problematic.</p></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"117 ","pages":"Article 102818"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022249623000743/pdfft?md5=67d69b64184de497db1e3d6b51cc26d6&pid=1-s2.0-S0022249623000743-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249623000743","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Psychological theories are often formulated at the level of latent, not directly observable, variables. Empirical measurement of latent variables ought to be valid. Classical psychometric validity indices can be difficult to apply in experimental contexts. A complementary validity index, termed retrodictive validity, is the correlation of theory-derived predicted scores with actually measured scores, in specifically designed calibration experiments. In the current note, I analyse how calibration experiments can be designed to maximise the information garnered and specifically, how to minimise the sample variance of retrodictive validity estimators. First, I harness asymptotic limits to analytically derive different distribution features that impact on estimator variance. Then, I numerically simulate various distributions with combinations of feature values. This allows deriving recommendations for the distribution of predicted values, and for resource investment, in calibration experiments. Finally, I highlight cases in which a misspecified theory is particularly problematic.
期刊介绍:
The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome.
Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation.
The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology.
Research Areas include:
• Models for sensation and perception, learning, memory and thinking
• Fundamental measurement and scaling
• Decision making
• Neural modeling and networks
• Psychophysics and signal detection
• Neuropsychological theories
• Psycholinguistics
• Motivational dynamics
• Animal behavior
• Psychometric theory