Andrew J. King , Lu Tang , Billie S. Davis , Sarah M. Preum , Leigh A. Bukowski , John Zimmerman , Jeremy M. Kahn
{"title":"Machine learning-based prediction of low-value care for hospitalized patients","authors":"Andrew J. King , Lu Tang , Billie S. Davis , Sarah M. Preum , Leigh A. Bukowski , John Zimmerman , Jeremy M. Kahn","doi":"10.1016/j.ibmed.2023.100115","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Low-value care (i.e., costly health care treatments that provide little or no benefit) is an ongoing problem in United States hospitals. Traditional strategies for reducing low-value care are only moderately successful. Informed by behavioral science principles, we sought to use machine learning to inform a targeted prompting system that suggests preferred alternative treatments at the point of care but before clinicians have made a decision.</p></div><div><h3>Methods</h3><p>We used intravenous administration of albumin for fluid resuscitation in intensive care unit (ICU) patients as an exemplar of low-value care practice, identified using the electronic health record of a multi-hospital health system. We divided all ICU episodes into 4-h periods and defined a set of relevant clinical features at the period level. We then developed two machine learning models: a single-stage model that directly predicts if a patient will receive albumin in the next period; and a two-stage model that first predicts if any resuscitation fluid will be administered and then predicts albumin only among the patients with a high probability of fluid use.</p></div><div><h3>Results</h3><p>We examined 87,489 ICU episodes divided into approximately 1.5 million 4-h periods. The area under the receiver operating characteristic curve was 0.86 for both prediction models. The positive predictive value was 0.21 (95% confidence interval: 0.20, 0.23) for the single-stage model and 0.22 (0.20, 0.23) for the two-stage model. Applying either model in a targeted prompting system could prevent 10% of albumin administrations, with an attending physician receiving one prompt every 4.2 days of ICU service.</p></div><div><h3>Conclusion</h3><p>Prediction of low-value care is feasible and could enable a point-of-care, targeted prompting system that offers suggestions ahead of the moment of need before clinicians have already decided. A two-stage approach does not improve performance but does interject new levers for the calibration of such a system.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"8 ","pages":"Article 100115"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521223000297/pdfft?md5=d988f6995039556797d42f805c1b7cfd&pid=1-s2.0-S2666521223000297-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521223000297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Low-value care (i.e., costly health care treatments that provide little or no benefit) is an ongoing problem in United States hospitals. Traditional strategies for reducing low-value care are only moderately successful. Informed by behavioral science principles, we sought to use machine learning to inform a targeted prompting system that suggests preferred alternative treatments at the point of care but before clinicians have made a decision.
Methods
We used intravenous administration of albumin for fluid resuscitation in intensive care unit (ICU) patients as an exemplar of low-value care practice, identified using the electronic health record of a multi-hospital health system. We divided all ICU episodes into 4-h periods and defined a set of relevant clinical features at the period level. We then developed two machine learning models: a single-stage model that directly predicts if a patient will receive albumin in the next period; and a two-stage model that first predicts if any resuscitation fluid will be administered and then predicts albumin only among the patients with a high probability of fluid use.
Results
We examined 87,489 ICU episodes divided into approximately 1.5 million 4-h periods. The area under the receiver operating characteristic curve was 0.86 for both prediction models. The positive predictive value was 0.21 (95% confidence interval: 0.20, 0.23) for the single-stage model and 0.22 (0.20, 0.23) for the two-stage model. Applying either model in a targeted prompting system could prevent 10% of albumin administrations, with an attending physician receiving one prompt every 4.2 days of ICU service.
Conclusion
Prediction of low-value care is feasible and could enable a point-of-care, targeted prompting system that offers suggestions ahead of the moment of need before clinicians have already decided. A two-stage approach does not improve performance but does interject new levers for the calibration of such a system.