Green synthesized silver nanoparticles functionalized interdigitated electrodes for bacterial sensing using non-faradaic electrochemical impedance spectroscopy

IF 2.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Micro and Nano Engineering Pub Date : 2023-11-07 DOI:10.1016/j.mne.2023.100231
Rhea Patel , Madhuri Vinchurkar , Rajul Patkar , Tejas Naik , Andrea Adami , Flavio Giacomozzi , Raman Ramesh , Bidhan Pramanick , Leandro Lorenzelli , Maryam Shojaei Baghini
{"title":"Green synthesized silver nanoparticles functionalized interdigitated electrodes for bacterial sensing using non-faradaic electrochemical impedance spectroscopy","authors":"Rhea Patel ,&nbsp;Madhuri Vinchurkar ,&nbsp;Rajul Patkar ,&nbsp;Tejas Naik ,&nbsp;Andrea Adami ,&nbsp;Flavio Giacomozzi ,&nbsp;Raman Ramesh ,&nbsp;Bidhan Pramanick ,&nbsp;Leandro Lorenzelli ,&nbsp;Maryam Shojaei Baghini","doi":"10.1016/j.mne.2023.100231","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present a label-free non-faradaic impedimetric biosensor to detect bacterial cells using microfabricated gold interdigitated electrode (IDE). Silver nanoparticles (AgNP) are green synthesized using aqueous neem extract and characterized using Attenuated Total Reflectance- Fourier Transform Infrared spectra (ATR-FTIR), Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and UV–Visible spectroscopy techniques. The synthesized AgNPs are well dispersed with an average size of 84 nm and showed an extensive antibacterial property indicated by a standard bioassay against <em>Escherichia coli (E. coli)</em>. Gold IDEs are microfabricated by lithography on borosilicate glass wafers. The biofunctionalization of gold IDE is carried out using thiol‑gold covalent chemistry with mercaptohexanol (MCH). The self-assembled monolayer (SAM) of MCH facilitates drop-cast deposition of AgNP on the surface forming an MCH-AgNP. The functionalized IDE is electrochemically stable for further experiments and was validated by open circuit potential measurements. The objective of developing a label-free approach is confirmed by cyclic voltammetry analysis. Non-faradaic electrochemical impedance spectroscopy (nf-EIS) is carried out to detect <em>E.coli</em> cells suspended in water. The antibacterial property of AgNP is exploited to detect the decrease in cell concentration using nf-EIS. The impedance signatures corresponding to the trapping of cells are recorded with respect to time. Bacterial growth is a major challenge in maintaining water quality. The results demonstrated in this work would help to mitigate this problem effectively in a quick time without the need for skilled labor and sophisticated instruments required in traditional antibacterial testing.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"21 ","pages":"Article 100231"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007223000618/pdfft?md5=04f86c6c80544a0543987167a37d6278&pid=1-s2.0-S2590007223000618-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007223000618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we present a label-free non-faradaic impedimetric biosensor to detect bacterial cells using microfabricated gold interdigitated electrode (IDE). Silver nanoparticles (AgNP) are green synthesized using aqueous neem extract and characterized using Attenuated Total Reflectance- Fourier Transform Infrared spectra (ATR-FTIR), Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and UV–Visible spectroscopy techniques. The synthesized AgNPs are well dispersed with an average size of 84 nm and showed an extensive antibacterial property indicated by a standard bioassay against Escherichia coli (E. coli). Gold IDEs are microfabricated by lithography on borosilicate glass wafers. The biofunctionalization of gold IDE is carried out using thiol‑gold covalent chemistry with mercaptohexanol (MCH). The self-assembled monolayer (SAM) of MCH facilitates drop-cast deposition of AgNP on the surface forming an MCH-AgNP. The functionalized IDE is electrochemically stable for further experiments and was validated by open circuit potential measurements. The objective of developing a label-free approach is confirmed by cyclic voltammetry analysis. Non-faradaic electrochemical impedance spectroscopy (nf-EIS) is carried out to detect E.coli cells suspended in water. The antibacterial property of AgNP is exploited to detect the decrease in cell concentration using nf-EIS. The impedance signatures corresponding to the trapping of cells are recorded with respect to time. Bacterial growth is a major challenge in maintaining water quality. The results demonstrated in this work would help to mitigate this problem effectively in a quick time without the need for skilled labor and sophisticated instruments required in traditional antibacterial testing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绿色合成银纳米粒子功能化交叉指电极用于细菌感应使用非法拉第电化学阻抗谱
在这项研究中,我们提出了一种无标记的非法拉第阻抗生物传感器,用于检测细菌细胞,该传感器使用微加工金交叉电极(IDE)。银纳米颗粒(AgNP)是用印度楝水提取物绿色合成的,并使用衰减全反射-傅里叶变换红外光谱(ATR-FTIR)、动态光散射(DLS)、扫描电子显微镜(SEM)和紫外可见光谱技术进行表征。合成的AgNPs分散良好,平均尺寸为84 nm,对大肠杆菌(E. coli)的标准生物测定表明,AgNPs具有广泛的抗菌性能。采用光刻技术在硼硅玻璃晶圆上制备了金ide。利用巯基-金共价化学与巯基己醇(MCH)进行了金IDE的生物功能化。MCH的自组装单层(SAM)有利于AgNP在表面滴铸沉积,形成MCH-AgNP。功能化IDE在进一步的实验中具有电化学稳定性,并通过开路电位测量进行了验证。开发无标签方法的目的通过循环伏安法分析得到证实。采用非法拉第电化学阻抗谱法(non - faraday electrochemical impedance spectroscopy, nf-EIS)检测水中悬浮的大肠杆菌。利用AgNP的抗菌特性,利用nf-EIS检测细胞浓度的下降。记录下与细胞捕获相对应的阻抗特征。细菌的生长是维持水质的主要挑战。这项工作的结果将有助于在短时间内有效地缓解这一问题,而不需要传统抗菌测试所需的熟练劳动力和复杂的仪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Micro and Nano Engineering
Micro and Nano Engineering Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
67
审稿时长
80 days
期刊最新文献
Laser-engraved holograms as entropy source for random number generators Release of hydrogen gas from PECVD silicon nitride thin films in cavities of MEMS sensors Developments in the design and microfabrication of photovoltaic retinal implants Enhanced plasma etching using nonlinear parameter evolution Low-frequency electromagnetic harvester for wind turbine vibrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1