Data-driven interpretable analysis for polysaccharide yield prediction

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Science and Ecotechnology Pub Date : 2023-09-27 DOI:10.1016/j.ese.2023.100321
Yushi Tian , Xu Yang , Nianhua Chen , Chunyan Li , Wulin Yang
{"title":"Data-driven interpretable analysis for polysaccharide yield prediction","authors":"Yushi Tian ,&nbsp;Xu Yang ,&nbsp;Nianhua Chen ,&nbsp;Chunyan Li ,&nbsp;Wulin Yang","doi":"10.1016/j.ese.2023.100321","DOIUrl":null,"url":null,"abstract":"<div><p>Cornstalks show promise as a raw material for polysaccharide production through xylanase. Rapid and accurate prediction of polysaccharide yield can facilitate process optimization, eliminating the need for extensive experimentation in actual production to refine reaction conditions, thereby saving time and costs. However, the intricate interplay of enzymatic factors poses challenges in predicting and optimizing polysaccharide yield accurately. Here, we introduce an innovative data-driven approach leveraging multiple artificial intelligence techniques to enhance polysaccharide production. We propose a machine learning framework to identify highly accurate polysaccharide yield prediction modeling methods and uncover optimal enzymatic parameter combinations. Notably, Random Forest (RF) and eXtreme Gradient Boost (XGB) demonstrate robust performance, achieving prediction accuracies of 93.0% and 95.6%, respectively, while an independently developed deep neural network (DNN) model achieves 91.1% accuracy. A feature importance analysis of XGB reveals the enzyme solution volume's dominant role (43.7%), followed by time (20.7%), substrate concentration (15%), temperature (15%), and pH (5.6%). Further interpretability analysis unveils complex parameter interactions and potential optimization strategies. This data-driven approach, incorporating machine learning, deep learning, and interpretable analysis, offers a viable pathway for polysaccharide yield prediction and the potential recovery of various agricultural residues.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"19 ","pages":"Article 100321"},"PeriodicalIF":14.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498423000868/pdfft?md5=fe3c048cc1986cc5245a746ca504643c&pid=1-s2.0-S2666498423000868-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498423000868","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Cornstalks show promise as a raw material for polysaccharide production through xylanase. Rapid and accurate prediction of polysaccharide yield can facilitate process optimization, eliminating the need for extensive experimentation in actual production to refine reaction conditions, thereby saving time and costs. However, the intricate interplay of enzymatic factors poses challenges in predicting and optimizing polysaccharide yield accurately. Here, we introduce an innovative data-driven approach leveraging multiple artificial intelligence techniques to enhance polysaccharide production. We propose a machine learning framework to identify highly accurate polysaccharide yield prediction modeling methods and uncover optimal enzymatic parameter combinations. Notably, Random Forest (RF) and eXtreme Gradient Boost (XGB) demonstrate robust performance, achieving prediction accuracies of 93.0% and 95.6%, respectively, while an independently developed deep neural network (DNN) model achieves 91.1% accuracy. A feature importance analysis of XGB reveals the enzyme solution volume's dominant role (43.7%), followed by time (20.7%), substrate concentration (15%), temperature (15%), and pH (5.6%). Further interpretability analysis unveils complex parameter interactions and potential optimization strategies. This data-driven approach, incorporating machine learning, deep learning, and interpretable analysis, offers a viable pathway for polysaccharide yield prediction and the potential recovery of various agricultural residues.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多糖产率预测的数据驱动可解释分析
玉米秸秆有望成为通过木聚糖酶生产多糖的原料。快速准确地预测多糖得率,有利于工艺优化,无需在实际生产中进行大量实验来完善反应条件,从而节省时间和成本。然而,复杂的相互作用的酶的因素提出了挑战,以准确地预测和优化多糖产量。在这里,我们介绍了一种创新的数据驱动方法,利用多种人工智能技术来提高多糖的生产。我们提出了一个机器学习框架来识别高度准确的多糖产量预测建模方法,并揭示最佳的酶参数组合。值得注意的是,随机森林(RF)和极端梯度增强(XGB)表现出稳健的性能,预测准确率分别达到93.0%和95.6%,而独立开发的深度神经网络(DNN)模型的准确率达到91.1%。XGB的特征重要性分析显示,酶溶液体积占主导地位(43.7%),其次是时间(20.7%)、底物浓度(15%)、温度(15%)和pH(5.6%)。进一步的可解释性分析揭示了复杂的参数相互作用和潜在的优化策略。这种数据驱动的方法,结合了机器学习、深度学习和可解释分析,为多糖产量预测和各种农业残留物的潜在回收提供了可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
期刊最新文献
Editorial Board Accelerating the establishment of a new science-policy panel to address the triple planetary crisis Rapid identification of antibiotic resistance gene hosts by prescreening ARG-like reads Enhanced removal of chiral emerging contaminants by an electroactive biofilter Mitigating household air pollution exposure through kitchen renovation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1