Lu Yang, Shaoning Geng, Ping Jiang, Yilin Wang, Jinhong Xiong
{"title":"Investigation on the keyhole/molten pool dynamic behavior during adjustable ring-mode laser welding of medium-thick aluminum alloy","authors":"Lu Yang, Shaoning Geng, Ping Jiang, Yilin Wang, Jinhong Xiong","doi":"10.1016/j.ijthermalsci.2023.108723","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Adjustable ring-mode laser welding<span> (ARM) provides a new solution for the pore defects of aluminum alloy<span> joints. However, the inhibition mechanism of ARM for porosity defects in the aluminum alloy welds with medium-thickness is still lacking. In this work, the dynamic behavior of the keyhole/molten pool and the formation/transport process of bubbles during adjustable ring-mode laser welding of medium-thick aluminum alloy are investigated by experiments and simulations. The results display that the laser power ratio of central-ring beam of 6:4, the porosity is 4.19 ± 2.32 %, which is reduced by 52.2 % compared with the weld by single laser welding (SLW) of the same penetration depth. The addition of ring beam helps to enlarge the tilt angle of the keyhole rear wall, which increases the ability of the keyhole wall to resist the impact of the molten pool. Besides, it also lowers the </span></span></span>radial pressure gradient and the local variation of the keyhole wall. These reasons reduce the formation of pores. Furthermore, the main eddy current direction of the molten pool changes less frequently, and the melt flow velocity impacting the keyhole wall only changes in the range of 0–0.5 m/s (SLW: 0.25–0.75 m/s). This diminishes the </span>fluid dynamic<span> pressure which is the primary driving force of the bubbles. The velocity of the bubble moving away from the bottom of the keyhole is decreased and it is more likely to remelt the keyhole and escape under the action of the laser beam at the next moment. This work provides engineering application and theoretical reference value for the suppression of pore defects in laser welding of aluminum alloy in medium-thick plates.</span></p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"196 ","pages":"Article 108723"},"PeriodicalIF":4.9000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072923005847","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adjustable ring-mode laser welding (ARM) provides a new solution for the pore defects of aluminum alloy joints. However, the inhibition mechanism of ARM for porosity defects in the aluminum alloy welds with medium-thickness is still lacking. In this work, the dynamic behavior of the keyhole/molten pool and the formation/transport process of bubbles during adjustable ring-mode laser welding of medium-thick aluminum alloy are investigated by experiments and simulations. The results display that the laser power ratio of central-ring beam of 6:4, the porosity is 4.19 ± 2.32 %, which is reduced by 52.2 % compared with the weld by single laser welding (SLW) of the same penetration depth. The addition of ring beam helps to enlarge the tilt angle of the keyhole rear wall, which increases the ability of the keyhole wall to resist the impact of the molten pool. Besides, it also lowers the radial pressure gradient and the local variation of the keyhole wall. These reasons reduce the formation of pores. Furthermore, the main eddy current direction of the molten pool changes less frequently, and the melt flow velocity impacting the keyhole wall only changes in the range of 0–0.5 m/s (SLW: 0.25–0.75 m/s). This diminishes the fluid dynamic pressure which is the primary driving force of the bubbles. The velocity of the bubble moving away from the bottom of the keyhole is decreased and it is more likely to remelt the keyhole and escape under the action of the laser beam at the next moment. This work provides engineering application and theoretical reference value for the suppression of pore defects in laser welding of aluminum alloy in medium-thick plates.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.