Dosimetric validation of the couch and coil model for high-field MR-linac treatment planning

IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Zeitschrift fur Medizinische Physik Pub Date : 2023-11-01 DOI:10.1016/j.zemedi.2023.02.002
Hans Lynggaard Riis , Rasmus Lübeck Christiansen , Nina Tilly , David Tilly
{"title":"Dosimetric validation of the couch and coil model for high-field MR-linac treatment planning","authors":"Hans Lynggaard Riis ,&nbsp;Rasmus Lübeck Christiansen ,&nbsp;Nina Tilly ,&nbsp;David Tilly","doi":"10.1016/j.zemedi.2023.02.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>The precision of the dose delivery in radiation therapy with high-field MR-linacs is challenging due to the substantial variation in the beam attenuation of the patient positioning system (PPS) (the couch and coils) as a function of the gantry angle. This work aimed to compare the attenuation of two PPSs located at two different MR-linac sites through measurements and calculations in the treatment planning system (TPS).</p></div><div><h3>Methods</h3><p>Attenuation measurements were performed at every 1° gantry angle at the two sites with a cylindrical water phantom with a Farmer chamber inserted along the rotational axis of the phantom. The phantom was positioned with the chamber reference point (CRP) at the MR-linac isocentre. A compensation strategy was applied to minimise sinusoidal measurement errors due to, e.g. air cavity or setup. A series of tests were performed to assess the sensitivity to measurement uncertainties. The dose to a model of the cylindrical water phantom with the PPS added was calculated in the TPS (Monaco v5.4 as well as in a development version Dev of an upcoming release), for the same gantry angles as for the measurements. The TPS PPS model dependency of the dose calculation voxelisation resolution was also investigated.</p></div><div><h3>Results</h3><p>A comparison of the measured attenuation of the two PPSs yielded differences of less than 0.5% for most gantry angles. The maximum deviation between the attenuation measurements for the two different PPSs exceeded ±1% at two specific gantry angles 115° and 245°, where the beam traverses the most complex PPS structures. The attenuation increases from 0% to 25% in 15° intervals around these angles. The measured and calculated attenuation, as calculated in v5.4, was generally within 1-2% with a systematic overestimation of the attenuation for gantry angles around 180°, as well as a maximum error of 4-5% for a few discrete angles in 10° gantry angle intervals around the complex PPS structures. The PPS modelling was improved compared to v5.4 in Dev, especially around 180°, and the results of those calculations were within ±1%, but with a similar 4% maximum deviation for the most complex PPS structures.</p></div><div><h3>Conclusions</h3><p>Generally, the two tested PPS structures exhibit very similar attenuation as a function of the gantry angle, including the angles with a steep change in attenuation. Both TPS versions, v5.4 and Dev delivered clinically acceptable accuracy of the calculated dose, as the differences in the measurements were overall better than ±2%. Additionally, Dev improved the accuracy of the dose calculation to ±1% for gantry angles around 180°.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"33 4","pages":"Pages 567-577"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388923000107/pdfft?md5=b803cbed8da14be6fd6496a875e50cdc&pid=1-s2.0-S0939388923000107-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388923000107","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

The precision of the dose delivery in radiation therapy with high-field MR-linacs is challenging due to the substantial variation in the beam attenuation of the patient positioning system (PPS) (the couch and coils) as a function of the gantry angle. This work aimed to compare the attenuation of two PPSs located at two different MR-linac sites through measurements and calculations in the treatment planning system (TPS).

Methods

Attenuation measurements were performed at every 1° gantry angle at the two sites with a cylindrical water phantom with a Farmer chamber inserted along the rotational axis of the phantom. The phantom was positioned with the chamber reference point (CRP) at the MR-linac isocentre. A compensation strategy was applied to minimise sinusoidal measurement errors due to, e.g. air cavity or setup. A series of tests were performed to assess the sensitivity to measurement uncertainties. The dose to a model of the cylindrical water phantom with the PPS added was calculated in the TPS (Monaco v5.4 as well as in a development version Dev of an upcoming release), for the same gantry angles as for the measurements. The TPS PPS model dependency of the dose calculation voxelisation resolution was also investigated.

Results

A comparison of the measured attenuation of the two PPSs yielded differences of less than 0.5% for most gantry angles. The maximum deviation between the attenuation measurements for the two different PPSs exceeded ±1% at two specific gantry angles 115° and 245°, where the beam traverses the most complex PPS structures. The attenuation increases from 0% to 25% in 15° intervals around these angles. The measured and calculated attenuation, as calculated in v5.4, was generally within 1-2% with a systematic overestimation of the attenuation for gantry angles around 180°, as well as a maximum error of 4-5% for a few discrete angles in 10° gantry angle intervals around the complex PPS structures. The PPS modelling was improved compared to v5.4 in Dev, especially around 180°, and the results of those calculations were within ±1%, but with a similar 4% maximum deviation for the most complex PPS structures.

Conclusions

Generally, the two tested PPS structures exhibit very similar attenuation as a function of the gantry angle, including the angles with a steep change in attenuation. Both TPS versions, v5.4 and Dev delivered clinically acceptable accuracy of the calculated dose, as the differences in the measurements were overall better than ±2%. Additionally, Dev improved the accuracy of the dose calculation to ±1% for gantry angles around 180°.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高场磁共振线性治疗规划的床和线圈模型的剂量学验证
目的由于患者定位系统(PPS)(治疗床和线圈)的射束衰减随龙门架角度的变化而有很大差异,因此在使用高场磁共振线性加速器进行放射治疗时,剂量投放的精确性具有挑战性。这项工作的目的是通过在治疗计划系统(TPS)中进行测量和计算,比较位于两个不同磁共振线阵部位的两个 PPS 的衰减情况。方法在两个部位每隔 1° 的龙门角度用一个圆柱形水模型进行衰减测量,模型中沿旋转轴插入一个 Farmer 腔。模型的定位是将腔体参考点(CRP)置于磁共振成像仪的等中心。采用了补偿策略,以尽量减少由于气腔或设置等原因造成的正弦测量误差。为评估对测量不确定性的敏感性,进行了一系列测试。在 TPS(Monaco v5.4,以及即将发布的开发版本 Dev)中计算了添加了 PPS 的圆柱形水体模型的剂量,龙门角度与测量时相同。结果比较两种 PPS 的测量衰减结果发现,在大多数龙门角度下,两者之间的差异小于 0.5%。在两个特定的龙门角度 115° 和 245°,两种不同 PPS 的衰减测量值之间的最大偏差超过 ±1%,在这两个角度,光束穿过最复杂的 PPS 结构。在这两个角度周围,衰减以 15° 的间隔从 0% 增加到 25%。在 v5.4 中计算的测量和计算衰减一般在 1-2% 的范围内,180° 左右的龙门角度的衰减被系统性高估,而在复杂 PPS 结构周围 10°龙门角度间隔内的几个离散角度的最大误差为 4-5%。与 Dev5.4 版相比,PPS 建模有所改进,尤其是在 180° 附近,计算结果在 ±1% 以内,但对于最复杂的 PPS 结构,最大偏差也同样为 4%。两个 TPS 版本(v5.4 和 Dev)都能提供临床上可接受的计算剂量精度,因为测量结果的差异总体上小于 ±2%。此外,Dev 将 180° 左右龙门角度的剂量计算精度提高到 ±1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
10.00%
发文量
69
审稿时长
65 days
期刊介绍: Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing. Focuses of the articles are: -Biophysical methods in radiation therapy and nuclear medicine -Dosimetry and radiation protection -Radiological diagnostics and quality assurance -Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography -Ultrasonography diagnostics, application of laser and UV rays -Electronic processing of biosignals -Artificial intelligence and machine learning in medical physics In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.
期刊最新文献
Source-detector trajectory optimization for CBCT metal artifact reduction based on PICCS reconstruction. Reduction of patient specific quality assurance through plan complexity metrics for VMAT plans with an open-source TPS script. Post-mastectomy radiotherapy: Impact of bolus thickness and irradiation technique on skin dose. Development of a PTV margin for preclinical irradiation of orthotopic pancreatic tumors derived from a well-known recipe for humans. Heterogeneity of absorbed dose distribution in kidney tissues and dose-response modelling of nephrotoxicity in radiopharmaceutical therapy with beta-particle emitters: A review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1