Influence of soil to structure stiffness on the accuracy of the pushover method for underground structures

Qi Wu , Yifeng Zhou , Jiawei Jiang
{"title":"Influence of soil to structure stiffness on the accuracy of the pushover method for underground structures","authors":"Qi Wu ,&nbsp;Yifeng Zhou ,&nbsp;Jiawei Jiang","doi":"10.1016/j.eqrea.2022.100118","DOIUrl":null,"url":null,"abstract":"<div><p>The pushover method for underground structures is a seismic analysis method featured by high calculation accuracy and a simple implementation process. The method has been widely used in seismic design and other related scientific research; however, the influence of different soil-structure flexibility ratios on the accuracy of this method is still not well understood. In this study, we select the cross-section structures beneath the Daikai subway station as the research object and establish 12 finite element analysis models with different soil-structure flexibility ratios using ABAQUS. All models are computed by the dynamic time-history method or the pushover method. Furthermore, the dynamic time-history solution result is taken as the standard solution, and the precision and application of the pushover analysis method are discussed based on the parameters of peak interlayer displacement and peak internal force of the middle column section. The results show that the soil-structure flexibility ratio has a significant influence on the calculation accuracy of the pushover method, and the calculation accuracy of this method is the most ideal when the soil-structure flexibility is equal to 1. The research results can provide significant references for the seismic design of underground structures or the improvement of simplified seismic analysis methods.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"2 4","pages":"Article 100118"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467022000069/pdfft?md5=643c3c3781620ef94e770177baa269ce&pid=1-s2.0-S2772467022000069-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Research Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772467022000069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The pushover method for underground structures is a seismic analysis method featured by high calculation accuracy and a simple implementation process. The method has been widely used in seismic design and other related scientific research; however, the influence of different soil-structure flexibility ratios on the accuracy of this method is still not well understood. In this study, we select the cross-section structures beneath the Daikai subway station as the research object and establish 12 finite element analysis models with different soil-structure flexibility ratios using ABAQUS. All models are computed by the dynamic time-history method or the pushover method. Furthermore, the dynamic time-history solution result is taken as the standard solution, and the precision and application of the pushover analysis method are discussed based on the parameters of peak interlayer displacement and peak internal force of the middle column section. The results show that the soil-structure flexibility ratio has a significant influence on the calculation accuracy of the pushover method, and the calculation accuracy of this method is the most ideal when the soil-structure flexibility is equal to 1. The research results can provide significant references for the seismic design of underground structures or the improvement of simplified seismic analysis methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
土对结构刚度对地下结构推覆法精度的影响
地下结构推覆法是一种计算精度高、实施过程简单的地震分析方法。该方法已广泛应用于抗震设计和其他相关科学研究中;然而,不同土-结构柔性比对该方法精度的影响尚不清楚。本研究以大开地铁站地下断面结构为研究对象,利用ABAQUS软件建立了12个不同土-结构柔度比的有限元分析模型。所有模型均采用动态时程法或推覆法进行计算。以动力时程解结果为标准解,讨论了基于层间位移峰值和中柱截面内力峰值参数的推覆分析方法的精度和应用。结果表明:土-结构柔度比对推覆法的计算精度有显著影响,当土-结构柔度= 1时,该方法的计算精度最理想。研究成果可为地下结构抗震设计或简化地震分析方法的改进提供重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
期刊最新文献
Site classification methodology using support vector machine: A study Improving image accuracy of ambient noise data by temporary seismic arrays at different observation periods Data merging methods for S-wave velocity and azimuthal anisotropy from different regions Characterization and application of submarine seismic ambient noise in the Bohai Sea and Yellow Sea Rapid determination of source parameters of the M6.2 Jishishan earthquake in Gansu Province and its application in emergency response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1