A comparison of likelihood-based methods for size-biased sampling

Pub Date : 2023-10-13 DOI:10.1016/j.jspi.2023.106115
Victoria L. Leaver , Robert G. Clark , Pavel N. Krivitsky , Carole L. Birrell
{"title":"A comparison of likelihood-based methods for size-biased sampling","authors":"Victoria L. Leaver ,&nbsp;Robert G. Clark ,&nbsp;Pavel N. Krivitsky ,&nbsp;Carole L. Birrell","doi":"10.1016/j.jspi.2023.106115","DOIUrl":null,"url":null,"abstract":"<div><p>Three likelihood approaches to estimation under informative sampling are compared using a special case for which analytic expressions are possible to derive. An independent and identically distributed population of values of a variable of interest is drawn from a gamma distribution, with the shape parameter and the population size both assumed to be known. The sampling method is selection with probability proportional to a power of the variable with replacement, so that duplicate sample units are possible. Estimators of the unknown parameter, variance estimators and asymptotic variances of the estimators are derived for maximum likelihood, sample likelihood and pseudo-likelihood estimation. Theoretical derivations and simulation results show that the efficiency of the sample likelihood approaches that of full maximum likelihood estimation when the sample size <span><math><mi>n</mi></math></span> tends to infinity and the sampling fraction <span><math><mi>f</mi></math></span> tends to zero. However, when <span><math><mi>n</mi></math></span> tends to infinity and <span><math><mi>f</mi></math></span> is not negligible, the maximum likelihood estimator is more efficient than the other methods because it takes the possibility of duplicate sample units into account. Pseudo-likelihood can perform much more poorly than the other methods in some cases. For the special case when the superpopulation is exponential and the selection is probability proportional to size, the anticipated variance of the pseudo-likelihood estimate is infinite.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375823000848/pdfft?md5=34807a0d3caadad51aaee1e2b82b751e&pid=1-s2.0-S0378375823000848-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823000848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Three likelihood approaches to estimation under informative sampling are compared using a special case for which analytic expressions are possible to derive. An independent and identically distributed population of values of a variable of interest is drawn from a gamma distribution, with the shape parameter and the population size both assumed to be known. The sampling method is selection with probability proportional to a power of the variable with replacement, so that duplicate sample units are possible. Estimators of the unknown parameter, variance estimators and asymptotic variances of the estimators are derived for maximum likelihood, sample likelihood and pseudo-likelihood estimation. Theoretical derivations and simulation results show that the efficiency of the sample likelihood approaches that of full maximum likelihood estimation when the sample size n tends to infinity and the sampling fraction f tends to zero. However, when n tends to infinity and f is not negligible, the maximum likelihood estimator is more efficient than the other methods because it takes the possibility of duplicate sample units into account. Pseudo-likelihood can perform much more poorly than the other methods in some cases. For the special case when the superpopulation is exponential and the selection is probability proportional to size, the anticipated variance of the pseudo-likelihood estimate is infinite.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
基于可能性的大小偏差抽样方法的比较
在信息抽样下的三种似然估计方法比较了一种可能推导出解析表达式的特殊情况。从伽马分布中绘制出感兴趣的变量值的独立和相同分布的总体,假设形状参数和总体大小都是已知的。抽样方法是选择与替换变量的幂成比例的概率,使重复的样本单位成为可能。给出了最大似然、样本似然和伪似然估计的未知参数估计量、方差估计量和渐近方差。理论推导和仿真结果表明,当样本容量n趋于无穷,采样分数f趋于零时,样本似然估计的效率接近完全极大似然估计的效率。然而,当n趋于无穷大且f不可忽略时,最大似然估计器比其他方法更有效,因为它考虑了重复样本单元的可能性。在某些情况下,伪似然方法的性能可能比其他方法差得多。对于超总体呈指数型且选择与大小成概率比例的特殊情况,拟似然估计的预期方差是无穷大的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1