Lin Yan, Bret M Rust, Sneha Sundaram, Michael R Bukowski
{"title":"Metabolomic Alterations in Mammary Glands from Pubertal Mice Fed a High-Fat Diet.","authors":"Lin Yan, Bret M Rust, Sneha Sundaram, Michael R Bukowski","doi":"10.1177/11786388221148858","DOIUrl":null,"url":null,"abstract":"<p><p>Dietary malpractice is a risk factor for obesity. This study tested the hypothesis that consumption of a high-fat diet alters mammary metabolome in pubertal mice. We performed untargeted metabolomic analysis of primary metabolism on mammary glands from pubertal mice fed the AIN93G standard diet or a high-fat diet (HFD) for 3 weeks. We identified 97 metabolites for statistical comparisons. The HFD altered the amino acid metabolism considerably. This included elevated expression of branched-chain amino acids, non-essential amino acids (aspartic acid and glutamic acid), and methionine sulfoxide (oxidized methionine) and an alteration in the aminoacyl-tRNA biosynthesis pathway. Furthermore, elevations of fumaric acid and malic acid (both are citrate cycle intermediates) and glyceric acid (its phosphate derivatives are intermediates of glycolysis) in HFD-fed mice suggest an acceleration of both citrate cycle and glycolysis. Lower expression of glycerol, oleic acid, and palmitoleic acid, as well as decreased mammary expression of genes encoding lipid metabolism (<i>Acaca</i>, <i>Fads1</i>, <i>Fasn</i>, <i>Scd1</i>, and <i>Srebf1</i>) in HFD-fed mice indicate an attenuated lipid metabolism in the presence of adequate dietary fat. In conclusion, consumption of the HFD for 3 weeks alters metabolic profile of pubertal mammary glands. This alteration may affect mammary development and growth in pubertal mice.</p>","PeriodicalId":19396,"journal":{"name":"Nutrition and Metabolic Insights","volume":"16 ","pages":"11786388221148858"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fb/9c/10.1177_11786388221148858.PMC9893363.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition and Metabolic Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786388221148858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Dietary malpractice is a risk factor for obesity. This study tested the hypothesis that consumption of a high-fat diet alters mammary metabolome in pubertal mice. We performed untargeted metabolomic analysis of primary metabolism on mammary glands from pubertal mice fed the AIN93G standard diet or a high-fat diet (HFD) for 3 weeks. We identified 97 metabolites for statistical comparisons. The HFD altered the amino acid metabolism considerably. This included elevated expression of branched-chain amino acids, non-essential amino acids (aspartic acid and glutamic acid), and methionine sulfoxide (oxidized methionine) and an alteration in the aminoacyl-tRNA biosynthesis pathway. Furthermore, elevations of fumaric acid and malic acid (both are citrate cycle intermediates) and glyceric acid (its phosphate derivatives are intermediates of glycolysis) in HFD-fed mice suggest an acceleration of both citrate cycle and glycolysis. Lower expression of glycerol, oleic acid, and palmitoleic acid, as well as decreased mammary expression of genes encoding lipid metabolism (Acaca, Fads1, Fasn, Scd1, and Srebf1) in HFD-fed mice indicate an attenuated lipid metabolism in the presence of adequate dietary fat. In conclusion, consumption of the HFD for 3 weeks alters metabolic profile of pubertal mammary glands. This alteration may affect mammary development and growth in pubertal mice.
期刊介绍:
Nutrition and Metabolic Insights is a peer-reviewed, open-access online journal focusing on all aspects of nutrition and metabolism. This encompasses nutrition, including the biochemistry of metabolism, exercise and associated physical processes and also includes clinical articles that relate to metabolism, such as obesity, lipidemias and diabetes. It includes research at the molecular, cellular and organismal levels. This journal welcomes new manuscripts for peer review on the following topics: Nutrition, including the biochemistry of metabolism, Exercise and associated physical processes, Clinical articles that relate to metabolism, such as obesity, lipidemias and diabetes, Research at the molecular, cellular and organismal levels, Other areas of interest include gene-nutrient interactions, the effects of hormones, models of metabolic function, macronutrient interactions, outcomes of changes in diet, and pathophysiology.