ATP-release pannexin channels are gated by lysophospholipids.

Erik Henze, Russell N Burkhardt, Bennett W Fox, Tyler J Schwertfeger, Eric Gelsleichter, Kevin Michalski, Lydia Kramer, Margret Lenfest, Jordyn M Boesch, Hening Lin, Frank C Schroeder, Toshimitsu Kawate
{"title":"ATP-release pannexin channels are gated by lysophospholipids.","authors":"Erik Henze, Russell N Burkhardt, Bennett W Fox, Tyler J Schwertfeger, Eric Gelsleichter, Kevin Michalski, Lydia Kramer, Margret Lenfest, Jordyn M Boesch, Hening Lin, Frank C Schroeder, Toshimitsu Kawate","doi":"10.1101/2023.10.23.563601","DOIUrl":null,"url":null,"abstract":"<p><p>In addition to its role as cellular energy currency, adenosine triphosphate (ATP) serves as an extracellular messenger that mediates diverse cell-to-cell communication. Compelling evidence supports that ATP is released from cells through pannexins, a family of membrane proteins that form heptameric large-pore channels. However, the activation mechanisms that trigger ATP release by pannexins remain poorly understood. Here, we discover lysophospholipids as endogenous pannexin activators, using activity-guided fractionation of mouse tissue extracts combined with untargeted metabolomics and electrophysiology. We show that lysophospholipids directly and reversibly activate pannexins in the absence of other proteins. Secretomics experiments reveal that lysophospholipid-activated pannexin 1 leads to the release of not only ATP but also other signaling metabolites, such as 5'-methylthioadenosine, which is important for immunomodulation. We also demonstrate that lysophospholipids activate endogenous pannexin 1 in human monocytes, leading to the release of IL-1β through inflammasome activation. Our results provide a connection between lipid metabolism and purinergic signaling, both of which play major roles in immune responses.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634739/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.10.23.563601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In addition to its role as cellular energy currency, adenosine triphosphate (ATP) serves as an extracellular messenger that mediates diverse cell-to-cell communication. Compelling evidence supports that ATP is released from cells through pannexins, a family of membrane proteins that form heptameric large-pore channels. However, the activation mechanisms that trigger ATP release by pannexins remain poorly understood. Here, we discover lysophospholipids as endogenous pannexin activators, using activity-guided fractionation of mouse tissue extracts combined with untargeted metabolomics and electrophysiology. We show that lysophospholipids directly and reversibly activate pannexins in the absence of other proteins. Secretomics experiments reveal that lysophospholipid-activated pannexin 1 leads to the release of not only ATP but also other signaling metabolites, such as 5'-methylthioadenosine, which is important for immunomodulation. We also demonstrate that lysophospholipids activate endogenous pannexin 1 in human monocytes, leading to the release of IL-1β through inflammasome activation. Our results provide a connection between lipid metabolism and purinergic signaling, both of which play major roles in immune responses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
atp释放的泛联蛋白通道由溶血磷脂门控。
三磷酸腺苷(ATP)作为细胞外信使,介导多种细胞间通讯。令人信服的证据表明,ATP是通过pannexins(一种七聚体大孔形成通道)从细胞中释放出来的。然而,通过泛内联蛋白触发ATP释放的激活机制仍然知之甚少。在这里,我们发现溶血磷脂作为内源性泛联蛋白激活剂,使用小鼠组织提取物的活性引导分离结合非靶向代谢组学和电生理学。我们发现溶血磷脂在没有其他蛋白质的情况下直接和可逆地激活泛内联蛋白。分子对接、诱变和单粒子低温电镜重建表明,溶血磷脂通过改变n端结构域的构象打开泛连接蛋白通道。我们的研究结果提供了脂质代谢和ATP信号之间的联系,两者在炎症和神经传递中都起着重要作用。一句话总结:非靶向代谢组学发现一类信使脂质是炎症和神经传递重要的膜通道的内源性激活剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Palatal segment contributions to midfacial anterior-posterior growth. Membrane potential mediates the cellular response to mechanical pressure. Actin Dysregulation Induces Neuroendocrine Plasticity and Immune Evasion: A Vulnerability of Small Cell Lung Cancer. Efficient coding in biophysically realistic excitatory-inhibitory spiking networks. Different complex regulatory phenotypes underlie hybrid male sterility in divergent rodent crosses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1