Phenotypic complexities of rare heterozygous neurexin-1 deletions.

Michael B Fernando, Yu Fan, Yanchun Zhang, Alex Tokolyi, Aleta N Murphy, Sarah Kammourh, P J Michael Deans, Sadaf Ghorbani, Ryan Onatzevitch, Adriana Pero, Christopher Padilla, Sarah Williams, Erin K Flaherty, Iya A Prytkova, Lei Cao, David A Knowles, Gang Fang, Paul A Slesinger, Kristen J Brennand
{"title":"Phenotypic complexities of rare heterozygous neurexin-1 deletions.","authors":"Michael B Fernando, Yu Fan, Yanchun Zhang, Alex Tokolyi, Aleta N Murphy, Sarah Kammourh, P J Michael Deans, Sadaf Ghorbani, Ryan Onatzevitch, Adriana Pero, Christopher Padilla, Sarah Williams, Erin K Flaherty, Iya A Prytkova, Lei Cao, David A Knowles, Gang Fang, Paul A Slesinger, Kristen J Brennand","doi":"10.1101/2023.10.28.564543","DOIUrl":null,"url":null,"abstract":"<p><p>Given the large number of genes significantly associated with risk for neuropsychiatric disorders, a critical unanswered question is the extent to which diverse mutations --sometimes impacting the same gene-- will require tailored therapeutic strategies. Here we consider this in the context of rare neuropsychiatric disorder-associated copy number variants (2p16.3) resulting in heterozygous deletions in <i>NRXN1</i>, a pre-synaptic cell adhesion protein that serves as a critical synaptic organizer in the brain. Complex patterns of <i>NRXN1</i> alternative splicing are fundamental to establishing diverse neurocircuitry, vary between the cell types of the brain, and are differentially impacted by unique (non-recurrent) deletions. We contrast the cell-type-specific impact of patient-specific mutations in <i>NRXN1</i> using human induced pluripotent stem cells, finding that perturbations in <i>NRXN1</i> splicing result in divergent cell-type-specific synaptic outcomes. Via distinct loss-of-function (LOF) and gain-of-function (GOF) mechanisms, <i>NRXN1</i> <sup>+/-</sup> deletions cause decreased synaptic activity in glutamatergic neurons, yet increased synaptic activity in GABAergic neurons. Reciprocal isogenic manipulations causally demonstrate that aberrant splicing drives these changes in synaptic activity. For <i>NRXN1</i> deletions, and perhaps more broadly, precision medicine will require stratifying patients based on whether their gene mutations act through LOF or GOF mechanisms, in order to achieve individualized restoration of <i>NRXN1</i> isoform repertoires by increasing wildtype, or ablating mutant isoforms. Given the increasing number of mutations predicted to engender both LOF and GOF mechanisms in brain disorders, our findings add nuance to future considerations of precision medicine.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634884/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.10.28.564543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given the large number of genes significantly associated with risk for neuropsychiatric disorders, a critical unanswered question is the extent to which diverse mutations --sometimes impacting the same gene-- will require tailored therapeutic strategies. Here we consider this in the context of rare neuropsychiatric disorder-associated copy number variants (2p16.3) resulting in heterozygous deletions in NRXN1, a pre-synaptic cell adhesion protein that serves as a critical synaptic organizer in the brain. Complex patterns of NRXN1 alternative splicing are fundamental to establishing diverse neurocircuitry, vary between the cell types of the brain, and are differentially impacted by unique (non-recurrent) deletions. We contrast the cell-type-specific impact of patient-specific mutations in NRXN1 using human induced pluripotent stem cells, finding that perturbations in NRXN1 splicing result in divergent cell-type-specific synaptic outcomes. Via distinct loss-of-function (LOF) and gain-of-function (GOF) mechanisms, NRXN1 +/- deletions cause decreased synaptic activity in glutamatergic neurons, yet increased synaptic activity in GABAergic neurons. Reciprocal isogenic manipulations causally demonstrate that aberrant splicing drives these changes in synaptic activity. For NRXN1 deletions, and perhaps more broadly, precision medicine will require stratifying patients based on whether their gene mutations act through LOF or GOF mechanisms, in order to achieve individualized restoration of NRXN1 isoform repertoires by increasing wildtype, or ablating mutant isoforms. Given the increasing number of mutations predicted to engender both LOF and GOF mechanisms in brain disorders, our findings add nuance to future considerations of precision medicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同NRXN1+/-突变的精确治疗靶向。
随着基因研究继续确定与神经精神疾病风险显著相关的风险位点,一个关键的悬而未决的问题是,不同的突变(有时影响同一基因)在多大程度上需要共同或单独定制的治疗策略。在这里,我们在罕见的、杂合的、非复发的拷贝数变异(2p16.3)的背景下考虑这一点,这些变异与影响NRXN1的各种神经精神疾病有关,NRXN1是一种突触前细胞粘附蛋白,在大脑中充当关键的突触组织者。NRXN1选择性剪接的复杂模式是建立多样化神经回路的基础,在大脑细胞类型之间存在差异,并且受到独特的患者特异性(非复发性)缺失的差异影响。精准医疗的进步可能需要以细胞类型特异性的方式恢复每个人的NRXN1亚型。为此,我们利用人诱导多能干细胞对比了NRXN1中独特的患者特异性突变对细胞类型的特异性影响。NRXN1剪接的干扰会导致不同的细胞类型特异性突触结果:尽管NRXN1 +/-缺失会导致谷氨酸能神经元成熟过程中突触活性降低,但未成熟gaba能神经元的突触活性却意外增加。谷氨酸能和氨基丁酸能突触缺陷都反映了独立的功能丧失(LOF)和功能获得(GOF)剪接缺陷。在临床相关性方面,我们发现β-雌二醇治疗增加了谷氨酸能神经元中NRXN1的表达,而反义寡核苷酸敲低了谷氨酸能和gaba能神经元中突变异构体的表达。直接或间接操作NRXN1剪接异构体为治疗人类2p16.3缺失提供了一种有希望的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Palatal segment contributions to midfacial anterior-posterior growth. Membrane potential mediates the cellular response to mechanical pressure. Actin dysregulation induces neuroendocrine plasticity and immune evasion: a vulnerability of small cell lung cancer. Efficient coding in biophysically realistic excitatory-inhibitory spiking networks. Different complex regulatory phenotypes underlie hybrid male sterility in divergent rodent crosses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1