Degradation analysis and doping modification optimization for high-voltage P-type layered cathode in sodium-ion batteries

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED 能源化学 Pub Date : 2023-10-26 DOI:10.1016/j.jechem.2023.10.026
Bao Zhang , Yi Zhao , Minghuang Li , Qi Wang , Lei Cheng , Lei Ming , Xing Ou , Xiaowei Wang
{"title":"Degradation analysis and doping modification optimization for high-voltage P-type layered cathode in sodium-ion batteries","authors":"Bao Zhang ,&nbsp;Yi Zhao ,&nbsp;Minghuang Li ,&nbsp;Qi Wang ,&nbsp;Lei Cheng ,&nbsp;Lei Ming ,&nbsp;Xing Ou ,&nbsp;Xiaowei Wang","doi":"10.1016/j.jechem.2023.10.026","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Advancing high-voltage stability of layered sodium-ion oxides represents a pivotal avenue for their progress in energy storage applications<span>. Despite this, a comprehensive understanding of the mechanisms underpinning their </span></span>structural deterioration<span> at elevated voltages remains insufficiently explored. In this study, we unveil a layer delamination phenomenon of Na</span></span><sub>0.67</sub>Ni<sub>0.3</sub>Mn<sub>0.7</sub>O<sub>2</sub><span> (NNM) within the 2.0–4.3 V voltage, attributed to considerable volumetric fluctuations along the </span><em>c</em>-axis and lattice oxygen reactions induced by the simultaneous Ni<sup>3+</sup>/Ni<sup>4+</sup> and anion redox reactions. By introducing Mg doping to diminished Ni–O antibonding, the anion oxidation-reduction reactions are effectively mitigated, and the structural integrity of the P2 phase remains firmly intact, safeguarding active sites and precluding the formation of novel interfaces. The Na<sub>0.67</sub>Mg<sub>0.05</sub>Ni<sub>0.25</sub>Mn<sub>0.7</sub>O<sub>2</sub> (NMNM-5) exhibits a specific capacity of 100.7 mA h g<sup>−1</sup><span>, signifying an 83% improvement compared to the NNM material within the voltage of 2.0–4.3 V. This investigation underscores the intricate interplay<span> between high-voltage stability and structural degradation mechanisms in layered sodium-ion oxides.</span></span></p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005958","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Advancing high-voltage stability of layered sodium-ion oxides represents a pivotal avenue for their progress in energy storage applications. Despite this, a comprehensive understanding of the mechanisms underpinning their structural deterioration at elevated voltages remains insufficiently explored. In this study, we unveil a layer delamination phenomenon of Na0.67Ni0.3Mn0.7O2 (NNM) within the 2.0–4.3 V voltage, attributed to considerable volumetric fluctuations along the c-axis and lattice oxygen reactions induced by the simultaneous Ni3+/Ni4+ and anion redox reactions. By introducing Mg doping to diminished Ni–O antibonding, the anion oxidation-reduction reactions are effectively mitigated, and the structural integrity of the P2 phase remains firmly intact, safeguarding active sites and precluding the formation of novel interfaces. The Na0.67Mg0.05Ni0.25Mn0.7O2 (NMNM-5) exhibits a specific capacity of 100.7 mA h g−1, signifying an 83% improvement compared to the NNM material within the voltage of 2.0–4.3 V. This investigation underscores the intricate interplay between high-voltage stability and structural degradation mechanisms in layered sodium-ion oxides.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钠离子电池高压p型层状阴极降解分析及掺杂改性优化
提高层状钠离子氧化物的高压稳定性是其在储能应用中取得进展的关键途径。尽管如此,对其在高电压下结构恶化的机制的全面理解仍然没有得到充分的探索。在这项研究中,我们揭示了Na0.67Ni0.3Mn0.7O2 (NNM)在2.0-4.3 V电压下的层脱层现象,这是由于沿c轴的相当大的体积波动和同时发生的Ni3+/Ni4+和阴离子氧化还原反应引起的晶格氧反应。通过将Mg掺杂到减少的Ni-O反键中,可以有效地减轻阴离子氧化还原反应,并保持P2相的结构完整性,保护活性位点并防止新界面的形成。Na0.67Mg0.05Ni0.25Mn0.7O2 (NMNM-5)的比容量为1007 mA h g−1,在2.0-4.3 V电压范围内,比NNM材料提高了83%。这项研究强调了层状钠离子氧化物中高压稳定性和结构降解机制之间复杂的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
期刊最新文献
Reversible Mn2+/Mn4+ double-electron redox in P3-type layer-structured sodium-ion cathode Recent progress of self-supported air electrodes for flexible Zn-air batteries Stable multi-electron reaction stimulated by W doping VS4 for enhancing magnesium storage performance Enhancing BiVO4 photoanode performance by insertion of an epitaxial BiFeO3 ferroelectric layer In-doping collaboratively controlling back interface and bulk defects to achieve efficient flexible CZTSSe solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1