Analysis on the mechanism of sound production and effects of musical flue pipe

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Computation and Systems Pub Date : 2022-02-17 DOI:10.1049/ccs2.12048
Jing Jiang, Jingyu Liu, Zijin Li, Tingyu Zhang, Hong Yang
{"title":"Analysis on the mechanism of sound production and effects of musical flue pipe","authors":"Jing Jiang,&nbsp;Jingyu Liu,&nbsp;Zijin Li,&nbsp;Tingyu Zhang,&nbsp;Hong Yang","doi":"10.1049/ccs2.12048","DOIUrl":null,"url":null,"abstract":"<p>String instruments, wind instruments and percussion instruments are three traditional categories of musical instruments, among which wind instruments play an important role. Usually, pitches of wind instruments are determined by the vibrating air column, and the musical pitches will be affected by multiple factors of the air flow. In this article, the mechanism of sound production by a pipe is analysed in terms of the coupling of the edge tone and the air column's vibration in the tube. Experiments and computational fluid dynamics numerical calculations are combined to study the influence of the jet velocity on the oscillation frequency of the edge tone and the musical sound produced by the tube, which help to gain deeper insight into the relation between physics and music.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12048","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

String instruments, wind instruments and percussion instruments are three traditional categories of musical instruments, among which wind instruments play an important role. Usually, pitches of wind instruments are determined by the vibrating air column, and the musical pitches will be affected by multiple factors of the air flow. In this article, the mechanism of sound production by a pipe is analysed in terms of the coupling of the edge tone and the air column's vibration in the tube. Experiments and computational fluid dynamics numerical calculations are combined to study the influence of the jet velocity on the oscillation frequency of the edge tone and the musical sound produced by the tube, which help to gain deeper insight into the relation between physics and music.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
音乐烟道的产声机理及效果分析
弦乐器、管乐器和打击乐器是传统乐器的三大类,其中管乐器扮演着重要的角色。通常,管乐器的音高是由振动的气柱决定的,而音高会受到气流的多种因素的影响。本文从管壁边缘音与管壁内气柱振动耦合的角度分析了管壁产生声音的机理。实验与计算流体力学数值计算相结合,研究了射流速度对边音振荡频率和管壁产生的音乐声的影响,有助于更深入地了解物理与音乐的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
期刊最新文献
EF-CorrCA: A multi-modal EEG-fNIRS subject independent model to assess speech quality on brain activity using correlated component analysis Detection of autism spectrum disorder using multi-scale enhanced graph convolutional network Evolving usability heuristics for visualising Augmented Reality/Mixed Reality applications using cognitive model of information processing and fuzzy analytical hierarchy process Emotion classification with multi-modal physiological signals using multi-attention-based neural network Optimisation of deep neural network model using Reptile meta learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1