{"title":"Synthesis, anti-acetylcholinesterase evaluation, molecular docking and molecular dynamics simulation of novel Psoralen derivatives.","authors":"Aso Hameed Hasan, Faten Syahira Mohamed Yusof, Natasha Amira Kamarudin, Sankaranarayanan Murugesan, Sonam Shakya, Joazaizulfazli Jamalis","doi":"10.2174/1570179420666230328121554","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Seven new psoralen derivatives were synthesised by carbodiimide coupling to active carboxylic acid to amide formation in mild reaction conditions.</p><p><strong>Methods: </strong>The psoralen derivatives were produced through the condensation of seven different types of amine groups consisting of electron withdrawing groups and electron donating groups.</p><p><strong>Results: </strong>All the synthesised compounds were obtained with moderate to high yields. Structural characterization using ATR-FTIR, 1H NMR, 13C NMR, and HRMS has confirmed their structure. Moreover, in silico evaluation of the psoralen derivatives against the AChE enzyme was performed, and acetylcholinesterase inhibitory activity of psoralen derivatives was also conducted.</p><p><strong>Conclusion: </strong>Results from molecular docking show the potential of compound 12e as AChE inhibitors due to its highest binding energy value. It was further supported by the anti-acetylcholinesterase activity of compound 12e, which has 91.69% inhibition, comparable to galantamine (94.12%). Furthermore, 100 ns run molecular dynamics (MD) simulation was used to refine docking results.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/1570179420666230328121554","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 3
Abstract
Introduction: Seven new psoralen derivatives were synthesised by carbodiimide coupling to active carboxylic acid to amide formation in mild reaction conditions.
Methods: The psoralen derivatives were produced through the condensation of seven different types of amine groups consisting of electron withdrawing groups and electron donating groups.
Results: All the synthesised compounds were obtained with moderate to high yields. Structural characterization using ATR-FTIR, 1H NMR, 13C NMR, and HRMS has confirmed their structure. Moreover, in silico evaluation of the psoralen derivatives against the AChE enzyme was performed, and acetylcholinesterase inhibitory activity of psoralen derivatives was also conducted.
Conclusion: Results from molecular docking show the potential of compound 12e as AChE inhibitors due to its highest binding energy value. It was further supported by the anti-acetylcholinesterase activity of compound 12e, which has 91.69% inhibition, comparable to galantamine (94.12%). Furthermore, 100 ns run molecular dynamics (MD) simulation was used to refine docking results.
期刊介绍:
Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.