An in-situ self-etching enabled high-power electrode for aqueous zinc-ion batteries

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED 能源化学 Pub Date : 2023-10-04 DOI:10.1016/j.jechem.2023.09.029
Shuang Hou , Dingtao Ma , Yanyi Wang , Kefeng Ouyang , Sicheng Shen , Hongwei Mi , Lingzhi Zhao , Peixin Zhang
{"title":"An in-situ self-etching enabled high-power electrode for aqueous zinc-ion batteries","authors":"Shuang Hou ,&nbsp;Dingtao Ma ,&nbsp;Yanyi Wang ,&nbsp;Kefeng Ouyang ,&nbsp;Sicheng Shen ,&nbsp;Hongwei Mi ,&nbsp;Lingzhi Zhao ,&nbsp;Peixin Zhang","doi":"10.1016/j.jechem.2023.09.029","DOIUrl":null,"url":null,"abstract":"<div><p>Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries (AZIBs). In this report, we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane (P-VO/C) as a robust free-standing electrode. Comprehensive investigations including the finite element simulation, in-situ X-ray diffraction, and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn<em><sub>x</sub></em>V<sub>2</sub>O<sub>5</sub>⋅<em>n</em>H<sub>2</sub>O, as well as superior storage kinetics with ultrahigh pseudocapacitive contribution. As demonstrated, such electrode can remain a specific capacity of 285 mA h g<sup>−1</sup> after 100 cycles at 1 A g<sup>−1</sup>, 144.4 mA h g<sup>−1</sup> after 1500 cycles at 30 A g<sup>−1</sup>, and even 97 mA h g<sup>−1</sup> after 3000 cycles at 60 A g<sup>−1</sup>, respectively. Unexpectedly, an impressive power density of 78.9 kW kg<sup>−1</sup> at the super-high current density of 100 A g<sup>−1</sup> also can be achieved. Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit, so as to promote the development of high-power energy storage devices including but not limited to AZIBs.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005442","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries (AZIBs). In this report, we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane (P-VO/C) as a robust free-standing electrode. Comprehensive investigations including the finite element simulation, in-situ X-ray diffraction, and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered ZnxV2O5nH2O, as well as superior storage kinetics with ultrahigh pseudocapacitive contribution. As demonstrated, such electrode can remain a specific capacity of 285 mA h g−1 after 100 cycles at 1 A g−1, 144.4 mA h g−1 after 1500 cycles at 30 A g−1, and even 97 mA h g−1 after 3000 cycles at 60 A g−1, respectively. Unexpectedly, an impressive power density of 78.9 kW kg−1 at the super-high current density of 100 A g−1 also can be achieved. Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit, so as to promote the development of high-power energy storage devices including but not limited to AZIBs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于锌离子电池的原位自蚀刻高功率电极
快速充电水性锌离子电池(AZIBs)正极材料的主要瓶颈是存储动力学缓慢。在本报告中,我们提出了一种新的原位自蚀刻策略,以解锁棕榈树状氧化钒/碳纳米纤维膜(P-VO/C)作为坚固的独立电极。通过有限元模拟、原位x射线衍射和原位电化学阻抗谱等综合研究,揭示了由VO到层状ZnxV2O5⋅nH2O的电化学诱导相变机制,以及具有超高赝电容贡献的优异存储动力学。结果表明,该电极在1 a g - 1下循环100次后的比容量为285 mA h g - 1,在30 a g - 1下循环1500次后的比容量为144.4 mA h g - 1,在60 a g - 1下循环3000次后的比容量为97 mA h g - 1。出乎意料的是,在100 A g−1的超高电流密度下,也可以实现令人印象深刻的78.9 kW kg−1的功率密度。这种原位自蚀刻独立电极的设计理念可以为扩展假电容存储极限提供全新的见解,从而促进包括但不限于azib在内的大功率储能器件的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
期刊最新文献
Reversible Mn2+/Mn4+ double-electron redox in P3-type layer-structured sodium-ion cathode Recent progress of self-supported air electrodes for flexible Zn-air batteries Stable multi-electron reaction stimulated by W doping VS4 for enhancing magnesium storage performance Enhancing BiVO4 photoanode performance by insertion of an epitaxial BiFeO3 ferroelectric layer In-doping collaboratively controlling back interface and bulk defects to achieve efficient flexible CZTSSe solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1