Vestibular Drop Attacks and Meniere's Disease as Results of Otolithic Membrane Damage-A Numerical Model.

Nicholas Senofsky, Justin Faber, Dolores Bozovic
{"title":"Vestibular Drop Attacks and Meniere's Disease as Results of Otolithic Membrane Damage-A Numerical Model.","authors":"Nicholas Senofsky,&nbsp;Justin Faber,&nbsp;Dolores Bozovic","doi":"10.1007/s10162-022-00880-0","DOIUrl":null,"url":null,"abstract":"<p><p>Meniere's disease (MD) is a condition of the inner ear with symptoms affecting both vestibular and hearing functions. Some patients with MD experience vestibular drop attacks (VDAs), which are violent falls caused by spurious vestibular signals from the utricle and/or saccule. Recent surgical work has shown that patients who experience VDAs also show disrupted utricular otolithic membranes. The objective of this study is to determine if otolithic membrane damage alone is sufficient to induce spurious vestibular signals, thus potentially eliciting VDAs and the vestibular dysfunction seen in patients with MD. We use a previously developed numerical model to describe the nonlinear dynamics of an array of active, elastically coupled hair cells. We then reduce the coupling strength of a selected region of the membrane to model the effects of tissue damage. As we reduce the coupling strength, we observe large and abrupt spikes in hair bundle position. As bundle displacements from the equilibrium position have been shown to lead to depolarization of the hair-cell soma and hence trigger neural activity, this spontaneous activity could elicit false detection of a vestibular signal. The results of this numerical model suggest that otolithic membrane damage alone may be sufficient to induce VDAs and the vestibular dysfunction seen in patients with MD. Future experimental work is needed to confirm these results in vitro.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":"24 1","pages":"107-115"},"PeriodicalIF":2.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971529/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jaro-Journal of the Association for Research in Otolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10162-022-00880-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

Meniere's disease (MD) is a condition of the inner ear with symptoms affecting both vestibular and hearing functions. Some patients with MD experience vestibular drop attacks (VDAs), which are violent falls caused by spurious vestibular signals from the utricle and/or saccule. Recent surgical work has shown that patients who experience VDAs also show disrupted utricular otolithic membranes. The objective of this study is to determine if otolithic membrane damage alone is sufficient to induce spurious vestibular signals, thus potentially eliciting VDAs and the vestibular dysfunction seen in patients with MD. We use a previously developed numerical model to describe the nonlinear dynamics of an array of active, elastically coupled hair cells. We then reduce the coupling strength of a selected region of the membrane to model the effects of tissue damage. As we reduce the coupling strength, we observe large and abrupt spikes in hair bundle position. As bundle displacements from the equilibrium position have been shown to lead to depolarization of the hair-cell soma and hence trigger neural activity, this spontaneous activity could elicit false detection of a vestibular signal. The results of this numerical model suggest that otolithic membrane damage alone may be sufficient to induce VDAs and the vestibular dysfunction seen in patients with MD. Future experimental work is needed to confirm these results in vitro.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
耳石膜损伤的前庭跌落发作和梅尼埃病的数值模型。
梅尼埃病(MD)是一种内耳疾病,其症状影响前庭和听力功能。一些MD患者经历前庭跌落发作(VDAs),这是由来自小囊和/或囊的虚假前庭信号引起的剧烈跌落。最近的外科工作表明,经历vda的患者也表现出耳石室膜的破坏。本研究的目的是确定耳石膜损伤是否足以诱导虚假的前庭信号,从而可能引发vda和MD患者的前庭功能障碍。我们使用先前开发的数值模型来描述一组活跃的、弹性耦合的毛细胞的非线性动力学。然后,我们降低膜的选定区域的耦合强度来模拟组织损伤的影响。当我们降低耦合强度时,我们观察到毛束位置的大而突然的尖峰。由于从平衡位置的束位移已被证明会导致毛细胞体的去极化,从而引发神经活动,这种自发活动可能会导致对前庭信号的错误检测。该数值模型的结果表明,耳石膜损伤本身可能足以诱导vda和MD患者的前庭功能障碍。未来的实验工作需要在体外证实这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
57
审稿时长
6-12 weeks
期刊介绍: JARO is a peer-reviewed journal that publishes research findings from disciplines related to otolaryngology and communications sciences, including hearing, balance, speech and voice. JARO welcomes submissions describing experimental research that investigates the mechanisms underlying problems of basic and/or clinical significance. Authors are encouraged to familiarize themselves with the kinds of papers carried by JARO by looking at past issues. Clinical case studies and pharmaceutical screens are not likely to be considered unless they reveal underlying mechanisms. Methods papers are not encouraged unless they include significant new findings as well. Reviews will be published at the discretion of the editorial board; consult the editor-in-chief before submitting.
期刊最新文献
Evaluating the Correlation Between Stimulus Frequency Otoacoustic Emission Group Delays and Tuning Sharpness in a Cochlear Model. Tuning and Timing of Organ of Corti Vibrations at the Apex of the Intact Chinchilla Cochlea. Vital Dye Uptake of YO-PRO-1 and DASPEI Depends Upon Mechanoelectrical Transduction Function in Zebrafish Hair Cells. Investigating the Effect of Blurring and Focusing Current in Cochlear Implant Users with the Panoramic ECAP Method. Eric Daniel Young.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1