David A Siegel, Timothy DeVries, Ivona Cetinić, Kelsey M Bisson
{"title":"Quantifying the Ocean's Biological Pump and Its Carbon Cycle Impacts on Global Scales.","authors":"David A Siegel, Timothy DeVries, Ivona Cetinić, Kelsey M Bisson","doi":"10.1146/annurev-marine-040722-115226","DOIUrl":null,"url":null,"abstract":"<p><p>The biological pump transports organic matter, created by phytoplankton productivity in the well-lit surface ocean, to the ocean's dark interior, where it is consumed by animals and heterotrophic microbes and remineralized back to inorganic forms. This downward transport of organic matter sequesters carbon dioxide from exchange with the atmosphere on timescales of months to millennia, depending on where in the water column the respiration occurs. There are three primary export pathways that link the upper ocean to the interior: the gravitational, migrant, and mixing pumps. These pathways are regulated by vastly different mechanisms, making it challenging to quantify the impacts of the biological pump on the global carbon cycle. In this review, we assess progress toward creating a global accounting of carbon export and sequestration via the biological pump and suggest a path toward achieving this goal.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":"15 ","pages":"329-356"},"PeriodicalIF":14.3000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Marine Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-marine-040722-115226","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 36
Abstract
The biological pump transports organic matter, created by phytoplankton productivity in the well-lit surface ocean, to the ocean's dark interior, where it is consumed by animals and heterotrophic microbes and remineralized back to inorganic forms. This downward transport of organic matter sequesters carbon dioxide from exchange with the atmosphere on timescales of months to millennia, depending on where in the water column the respiration occurs. There are three primary export pathways that link the upper ocean to the interior: the gravitational, migrant, and mixing pumps. These pathways are regulated by vastly different mechanisms, making it challenging to quantify the impacts of the biological pump on the global carbon cycle. In this review, we assess progress toward creating a global accounting of carbon export and sequestration via the biological pump and suggest a path toward achieving this goal.
期刊介绍:
The Annual Review of Marine Science, published since 2009, offers a comprehensive overview of the field. It covers various disciplines, including coastal and blue water oceanography (biological, chemical, geological, and physical), ecology, conservation, and technological advancements related to the marine environment. The journal's transition from gated to open access through Annual Reviews' Subscribe to Open program ensures that all articles are available under a CC BY license, promoting wider accessibility and dissemination of knowledge.