Masatoshi Oka, Sumako Kameishi, Yun-Kyoung Cho, Sun U Song, David W Grainger, Teruo Okano
{"title":"Clinically Relevant Mesenchymal Stem/Stromal Cell Sheet Transplantation Method for Kidney Disease.","authors":"Masatoshi Oka, Sumako Kameishi, Yun-Kyoung Cho, Sun U Song, David W Grainger, Teruo Okano","doi":"10.1089/ten.TEC.2022.0200","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic kidney disease (CKD) is the irreversible loss of nephron function, leading to a build-up of toxins, prolonged inflammation, and ultimately fibrosis. Currently, no effective therapies exist to treat CKD due to its complex pathophysiology. Mesenchymal stem/stromal cell (MSC) transplantation is a promising strategy to treat kidney diseases, and multiple clinical trials are currently ongoing. We previously demonstrated that rat bone marrow-derived MSC (BMSC) sheets transplanted onto surgically decapsulated kidney exert therapeutic effects that suppressed renal fibrosis progression based on enhanced vascularization. However, there are clinical concerns about kidney decapsulation such as impaired glomerular filtration rate and Na<sup>+</sup> ion and H<sub>2</sub>O excretion, leading to kidney dysfunction. Therefore, for transitioning from basic research to translational research using cell sheet therapy for kidney disease, it is essential to develop a new cell sheet transplantation strategy without kidney decapsulation. Significantly, we employed cell sheets engineered from clinical-grade human clonal BMSC (cBMSC) and transplanted these onto intact renal capsule to evaluate their therapeutic ability in the rat ischemia-reperfusion injury (IRI) model. Histological analysis 1-day postsurgery showed that cBMSC sheets engrafted well onto intact renal capsule. Interestingly, some grafted cBMSCs migrated into the renal parenchyma. At 1-3 days postsurgery (acute stage), grafted cBMSC sheets prevented tubular epithelial cell injury. At 28 days postsurgery (chronic phase), we observed that grafted cBMSC sheets suppressed renal fibrosis in the rat IRI model. Taken together, engineered cBMSC sheet transplantation onto intact renal capsule suppresses tubular epithelial cell injury and renal fibrosis, supporting further development as a possible clinically relevant strategy. Impact statement Chronic kidney disease (CKD) produces irreversible loss of nephron function, leading to toxemia, prolonged inflammation, and ultimately kidney fibrosis. Currently, no therapies exist to effectively treat CKD due to its complex pathophysiology. Mesenchymal stem/stromal cells (MSCs) are widely known to secret therapeutic paracrine factors, which is expected to provide a new effective therapy for unmet medical needs. However, unsatisfied MSC quality and administration methods to patients limit their therapeutic effects. In this study, we engineered clonal bone marrow-derived MSC sheets and established clinically relevant cell sheet transplantation strategy to treat renal fibrosis, which would improve MSC treatment for kidney disease.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 2","pages":"54-62"},"PeriodicalIF":2.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEC.2022.0200","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 4
Abstract
Chronic kidney disease (CKD) is the irreversible loss of nephron function, leading to a build-up of toxins, prolonged inflammation, and ultimately fibrosis. Currently, no effective therapies exist to treat CKD due to its complex pathophysiology. Mesenchymal stem/stromal cell (MSC) transplantation is a promising strategy to treat kidney diseases, and multiple clinical trials are currently ongoing. We previously demonstrated that rat bone marrow-derived MSC (BMSC) sheets transplanted onto surgically decapsulated kidney exert therapeutic effects that suppressed renal fibrosis progression based on enhanced vascularization. However, there are clinical concerns about kidney decapsulation such as impaired glomerular filtration rate and Na+ ion and H2O excretion, leading to kidney dysfunction. Therefore, for transitioning from basic research to translational research using cell sheet therapy for kidney disease, it is essential to develop a new cell sheet transplantation strategy without kidney decapsulation. Significantly, we employed cell sheets engineered from clinical-grade human clonal BMSC (cBMSC) and transplanted these onto intact renal capsule to evaluate their therapeutic ability in the rat ischemia-reperfusion injury (IRI) model. Histological analysis 1-day postsurgery showed that cBMSC sheets engrafted well onto intact renal capsule. Interestingly, some grafted cBMSCs migrated into the renal parenchyma. At 1-3 days postsurgery (acute stage), grafted cBMSC sheets prevented tubular epithelial cell injury. At 28 days postsurgery (chronic phase), we observed that grafted cBMSC sheets suppressed renal fibrosis in the rat IRI model. Taken together, engineered cBMSC sheet transplantation onto intact renal capsule suppresses tubular epithelial cell injury and renal fibrosis, supporting further development as a possible clinically relevant strategy. Impact statement Chronic kidney disease (CKD) produces irreversible loss of nephron function, leading to toxemia, prolonged inflammation, and ultimately kidney fibrosis. Currently, no therapies exist to effectively treat CKD due to its complex pathophysiology. Mesenchymal stem/stromal cells (MSCs) are widely known to secret therapeutic paracrine factors, which is expected to provide a new effective therapy for unmet medical needs. However, unsatisfied MSC quality and administration methods to patients limit their therapeutic effects. In this study, we engineered clonal bone marrow-derived MSC sheets and established clinically relevant cell sheet transplantation strategy to treat renal fibrosis, which would improve MSC treatment for kidney disease.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.