Jay Sureshbhai Patel, Ryan Brandon, Marisol Tellez, Jasim M Albandar, Rishi Rao, Joachim Krois, Huanmei Wu
{"title":"Developing Automated Computer Algorithms to Phenotype Periodontal Disease Diagnoses in Electronic Dental Records.","authors":"Jay Sureshbhai Patel, Ryan Brandon, Marisol Tellez, Jasim M Albandar, Rishi Rao, Joachim Krois, Huanmei Wu","doi":"10.1055/s-0042-1757880","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Our objective was to phenotype periodontal disease (PD) diagnoses from three different sections (diagnosis codes, clinical notes, and periodontal charting) of the electronic dental records (EDR) by developing two automated computer algorithms.</p><p><strong>Methods: </strong>We conducted a retrospective study using EDR data of patients (<i>n</i> = 27,138) who received care at Temple University Maurice H. Kornberg School of Dentistry from January 1, 2017 to August 31, 2021. We determined the completeness of patient demographics, periodontal charting, and PD diagnoses information in the EDR. Next, we developed two automated computer algorithms to automatically diagnose patients' PD statuses from clinical notes and periodontal charting data. Last, we phenotyped PD diagnoses using automated computer algorithms and reported the improved completeness of diagnosis.</p><p><strong>Results: </strong>The completeness of PD diagnosis from the EDR was as follows: periodontal diagnosis codes 36% (<i>n</i> = 9,834), diagnoses in clinical notes 18% (<i>n</i> = 4,867), and charting information 80% (<i>n</i> = 21,710). After phenotyping, the completeness of PD diagnoses improved to 100%. Eleven percent of patients had healthy periodontium, 43% were with gingivitis, 3% with stage I, 36% with stage II, and 7% with stage III/IV periodontitis.</p><p><strong>Conclusions: </strong>We successfully developed, tested, and deployed two automated algorithms on big EDR datasets to improve the completeness of PD diagnoses. After phenotyping, EDR provided 100% completeness of PD diagnoses of 27,138 unique patients for research purposes. This approach is recommended for use in other large databases for the evaluation of their EDR data quality and for phenotyping PD diagnoses and other relevant variables.</p>","PeriodicalId":49822,"journal":{"name":"Methods of Information in Medicine","volume":"61 S 02","pages":"e125-e133"},"PeriodicalIF":1.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a4/d8/10-1055-s-0042-1757880.PMC9788909.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Information in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/s-0042-1757880","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Objective: Our objective was to phenotype periodontal disease (PD) diagnoses from three different sections (diagnosis codes, clinical notes, and periodontal charting) of the electronic dental records (EDR) by developing two automated computer algorithms.
Methods: We conducted a retrospective study using EDR data of patients (n = 27,138) who received care at Temple University Maurice H. Kornberg School of Dentistry from January 1, 2017 to August 31, 2021. We determined the completeness of patient demographics, periodontal charting, and PD diagnoses information in the EDR. Next, we developed two automated computer algorithms to automatically diagnose patients' PD statuses from clinical notes and periodontal charting data. Last, we phenotyped PD diagnoses using automated computer algorithms and reported the improved completeness of diagnosis.
Results: The completeness of PD diagnosis from the EDR was as follows: periodontal diagnosis codes 36% (n = 9,834), diagnoses in clinical notes 18% (n = 4,867), and charting information 80% (n = 21,710). After phenotyping, the completeness of PD diagnoses improved to 100%. Eleven percent of patients had healthy periodontium, 43% were with gingivitis, 3% with stage I, 36% with stage II, and 7% with stage III/IV periodontitis.
Conclusions: We successfully developed, tested, and deployed two automated algorithms on big EDR datasets to improve the completeness of PD diagnoses. After phenotyping, EDR provided 100% completeness of PD diagnoses of 27,138 unique patients for research purposes. This approach is recommended for use in other large databases for the evaluation of their EDR data quality and for phenotyping PD diagnoses and other relevant variables.
期刊介绍:
Good medicine and good healthcare demand good information. Since the journal''s founding in 1962, Methods of Information in Medicine has stressed the methodology and scientific fundamentals of organizing, representing and analyzing data, information and knowledge in biomedicine and health care. Covering publications in the fields of biomedical and health informatics, medical biometry, and epidemiology, the journal publishes original papers, reviews, reports, opinion papers, editorials, and letters to the editor. From time to time, the journal publishes articles on particular focus themes as part of a journal''s issue.