{"title":"Breath VOC analysis and machine learning approaches for disease screening: a review.","authors":"Haripriya P, Madhavan Rangarajan, Hardik J Pandya","doi":"10.1088/1752-7163/acb283","DOIUrl":null,"url":null,"abstract":"<p><p>Early disease detection is often correlated with a reduction in mortality rate and improved prognosis. Currently, techniques like biopsy and imaging that are used to screen chronic diseases are invasive, costly or inaccessible to a large population. Thus, a non-invasive disease screening technology is the need of the hour. Existing non-invasive methods like gas chromatography-mass spectrometry, selected-ion flow-tube mass spectrometry, and proton transfer reaction-mass-spectrometry are expensive. These techniques necessitate experienced operators, making them unsuitable for a large population. Various non-invasive sources are available for disease detection, of which exhaled breath is preferred as it contains different volatile organic compounds (VOCs) that reflect the biochemical reactions in the human body. Disease screening by exhaled breath VOC analysis can revolutionize the healthcare industry. This review focuses on exhaled breath VOC biomarkers for screening various diseases with a particular emphasis on liver diseases and head and neck cancer as examples of diseases related to metabolic disorders and diseases unrelated to metabolic disorders, respectively. Single sensor and sensor array-based (Electronic Nose) approaches for exhaled breath VOC detection are briefly described, along with the machine learning techniques used for pattern recognition.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"17 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/acb283","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 4
Abstract
Early disease detection is often correlated with a reduction in mortality rate and improved prognosis. Currently, techniques like biopsy and imaging that are used to screen chronic diseases are invasive, costly or inaccessible to a large population. Thus, a non-invasive disease screening technology is the need of the hour. Existing non-invasive methods like gas chromatography-mass spectrometry, selected-ion flow-tube mass spectrometry, and proton transfer reaction-mass-spectrometry are expensive. These techniques necessitate experienced operators, making them unsuitable for a large population. Various non-invasive sources are available for disease detection, of which exhaled breath is preferred as it contains different volatile organic compounds (VOCs) that reflect the biochemical reactions in the human body. Disease screening by exhaled breath VOC analysis can revolutionize the healthcare industry. This review focuses on exhaled breath VOC biomarkers for screening various diseases with a particular emphasis on liver diseases and head and neck cancer as examples of diseases related to metabolic disorders and diseases unrelated to metabolic disorders, respectively. Single sensor and sensor array-based (Electronic Nose) approaches for exhaled breath VOC detection are briefly described, along with the machine learning techniques used for pattern recognition.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.