{"title":"Enhanced emission intensity in (Li<sup>+</sup>/Ca<sup>2+</sup>/Bi<sup>3+</sup>) ions co-doped NaLa(MoO<sub>4</sub>)<sub>2</sub>: Dy<sup>3+</sup>phosphors and their Judd-Ofelt analysis for WLEDs applications.","authors":"Sonali Sonali, C Shivakumara","doi":"10.1088/2050-6120/acbbb9","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, we have synthesized a series of Dy3+ ion doped NaLa(MoO4)2phosphors by the conventional solid-state method at 750 °C for 4h. All the compounds were crystallized in the tetragonal scheelite type structure with space group (I41/a, No.88). The morphology and functional group were confirmed by the field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared(FTIR)spectroscopy. Upon near-Ultraviolet (n-UV) excitation, the PL spectra exhibit the two characteristic emissions of Dy3+ ions, blue (4F9/2→6H15/2) at 487 nm and yellow (4F9/2→6H13/2) at 574nm respectively. The optimum concentration of Dy3+ionis 3 mol% and then quenching occurred due to multipolar interaction. Further, enhanced the emission intensity by co-doping with monovalent (Li+), divalent (Ca2+) and trivalent (Bi3+) ions. Among them, Li+ ion co-doped samples are shown maximum intensity (50 times) more than Dy3+ doped phosphors as relaxation of parity restriction of electric dipole transition because of local distortion of crystal field around the Dy3+ ions. In addition, by incorporation of Eu3+ ions into NaLa(MoO4)2:Dy3+system, tuned the emission color from white to red, owing to energy transfer from Dy3+ to Eu3+ ions. The intensity parameters (Ω2, Ω4) and radiative properties such as transition probabilities (AT), radiative lifetime (rad), and branching ratio were calculated using the Judd-Ofelt theory. CIE color coordinates, CCT values indicates that these phosphors exhibit an excellent white emission. The determined radiative properties, CIE and CCT results revealed that the Dy3+-activated NaLa(MoO4)2phosphors are potential materials for developing white LEDs, and optoelectronic device fabrications.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Applications in Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1088/2050-6120/acbbb9","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, we have synthesized a series of Dy3+ ion doped NaLa(MoO4)2phosphors by the conventional solid-state method at 750 °C for 4h. All the compounds were crystallized in the tetragonal scheelite type structure with space group (I41/a, No.88). The morphology and functional group were confirmed by the field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared(FTIR)spectroscopy. Upon near-Ultraviolet (n-UV) excitation, the PL spectra exhibit the two characteristic emissions of Dy3+ ions, blue (4F9/2→6H15/2) at 487 nm and yellow (4F9/2→6H13/2) at 574nm respectively. The optimum concentration of Dy3+ionis 3 mol% and then quenching occurred due to multipolar interaction. Further, enhanced the emission intensity by co-doping with monovalent (Li+), divalent (Ca2+) and trivalent (Bi3+) ions. Among them, Li+ ion co-doped samples are shown maximum intensity (50 times) more than Dy3+ doped phosphors as relaxation of parity restriction of electric dipole transition because of local distortion of crystal field around the Dy3+ ions. In addition, by incorporation of Eu3+ ions into NaLa(MoO4)2:Dy3+system, tuned the emission color from white to red, owing to energy transfer from Dy3+ to Eu3+ ions. The intensity parameters (Ω2, Ω4) and radiative properties such as transition probabilities (AT), radiative lifetime (rad), and branching ratio were calculated using the Judd-Ofelt theory. CIE color coordinates, CCT values indicates that these phosphors exhibit an excellent white emission. The determined radiative properties, CIE and CCT results revealed that the Dy3+-activated NaLa(MoO4)2phosphors are potential materials for developing white LEDs, and optoelectronic device fabrications.
期刊介绍:
Methods and Applications in Fluorescence focuses on new developments in fluorescence spectroscopy, imaging, microscopy, fluorescent probes, labels and (nano)materials. It will feature both methods and advanced (bio)applications and accepts original research articles, reviews and technical notes.