Preethi Somasundaram, Madeline M Farley, Melissa A Rudy, Katya Sigal, Andoni I Asencor, David G Stefanoff, Malay Shah, Puneetha Goli, Jenny Heo, Shufang Wang, Nicholas M Tran, Trent A Watkins
{"title":"Coordinated stimulation of axon regenerative and neurodegenerative transcriptional programs by ATF4 following optic nerve injury.","authors":"Preethi Somasundaram, Madeline M Farley, Melissa A Rudy, Katya Sigal, Andoni I Asencor, David G Stefanoff, Malay Shah, Puneetha Goli, Jenny Heo, Shufang Wang, Nicholas M Tran, Trent A Watkins","doi":"10.1101/2023.03.29.534798","DOIUrl":null,"url":null,"abstract":"<p><p>Stress signaling is important for determining the fates of neurons following axonal insults. Previously we showed that the stress-responsive kinase PERK contributes to injury-induced neurodegeneration (Larhammar et al., 2017). Here we show that PERK acts primarily through Activating Transcription Factor-4 (ATF4) to stimulate not only pro-apoptotic but also pro-regenerative responses following optic nerve damage. Using conditional knockout mice, we find an extensive PERK/ATF4-dependent transcriptional response that includes canonical ATF4 target genes and modest contributions by C/EBP Homologous Protein (CHOP). Overlap with c-Jun-dependent transcription suggests interplay with a parallel stress pathway that orchestrates regenerative and apoptotic responses. Accordingly, neuronal knockout of ATF4 recapitulates the neuroprotection afforded by PERK deficiency, and PERK or ATF4 knockout impairs optic axon regeneration enabled by disrupting the tumor suppressor PTEN. These findings reveal an integral role for PERK/ATF4 in coordinating neurodegenerative and regenerative responses to CNS axon injury.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081193/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.03.29.534798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Stress signaling is important for determining the fates of neurons following axonal insults. Previously we showed that the stress-responsive kinase PERK contributes to injury-induced neurodegeneration (Larhammar et al., 2017). Here we show that PERK acts primarily through Activating Transcription Factor-4 (ATF4) to stimulate not only pro-apoptotic but also pro-regenerative responses following optic nerve damage. Using conditional knockout mice, we find an extensive PERK/ATF4-dependent transcriptional response that includes canonical ATF4 target genes and modest contributions by C/EBP Homologous Protein (CHOP). Overlap with c-Jun-dependent transcription suggests interplay with a parallel stress pathway that orchestrates regenerative and apoptotic responses. Accordingly, neuronal knockout of ATF4 recapitulates the neuroprotection afforded by PERK deficiency, and PERK or ATF4 knockout impairs optic axon regeneration enabled by disrupting the tumor suppressor PTEN. These findings reveal an integral role for PERK/ATF4 in coordinating neurodegenerative and regenerative responses to CNS axon injury.