{"title":"Hyaluronidase-inhibiting Polysaccharide from <i>Caulerpa lentillifera</i>.","authors":"Mahanama Geegana Gamage Awanthi, Saki Nagamoto, Hirosuke Oku, Kanefumi Kitahara, Teruko Konishi","doi":"10.5458/jag.jag.JAG-2022_0004","DOIUrl":null,"url":null,"abstract":"<p><p>Algal sulfated polysaccharides are known to be effective hyaluronidase inhibitors. We evaluated hyaluronidase inhibitory activity of sulfated polysaccharide (SP) from <i>Caulerpa lentillifera.</i> Results showed that SP with IC<sub>50</sub> of 163 µg/mL appears to allosterically inhibit the hyaluronidase activity. Main sugar composition and sulfate content of SP was estimated to be Gal, Glc, Xyl, Man, uronic acids, and sulfate in the weight percent of 27.7: 28.9: 14.6: 22.5: 3.4: 21.7. We modified the SP by desulfation and partial hydrolysis with trifluoroacetic acid (TFA) to investigate the effect of sulfate content and molecular weight on inhibition. Hyaluronidase inhibitory activity of desulfated SP, 0.1 M TFA-hydrolyzed SP and 0.5 M TFA-hydrolyzed SP were significantly lower than that of native SP, revealing that sulfate content or molecular weight is important for hyaluronidase inhibition.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b3/b8/70_jag.JAG-2022_0004.PMC10077112.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2022_0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Algal sulfated polysaccharides are known to be effective hyaluronidase inhibitors. We evaluated hyaluronidase inhibitory activity of sulfated polysaccharide (SP) from Caulerpa lentillifera. Results showed that SP with IC50 of 163 µg/mL appears to allosterically inhibit the hyaluronidase activity. Main sugar composition and sulfate content of SP was estimated to be Gal, Glc, Xyl, Man, uronic acids, and sulfate in the weight percent of 27.7: 28.9: 14.6: 22.5: 3.4: 21.7. We modified the SP by desulfation and partial hydrolysis with trifluoroacetic acid (TFA) to investigate the effect of sulfate content and molecular weight on inhibition. Hyaluronidase inhibitory activity of desulfated SP, 0.1 M TFA-hydrolyzed SP and 0.5 M TFA-hydrolyzed SP were significantly lower than that of native SP, revealing that sulfate content or molecular weight is important for hyaluronidase inhibition.
藻类硫酸酸化多糖是已知的有效的透明质酸酶抑制剂。研究了小扁豆硫酸酸化多糖(SP)的透明质酸酶抑制活性。结果表明,IC50为163µg/mL的SP具有变构性抑制透明质酸酶活性的作用。SP的主要糖组成和硫酸盐含量为Gal、Glc、Xyl、Man、醛酸和硫酸盐,重量百分比分别为27.7:28.9:14.6:22.5:3.4:21.7。用三氟乙酸(TFA)对SP进行了脱硫和部分水解改性,考察了硫酸盐含量和分子量对抑制作用的影响。脱硫SP、0.1 M tfa -水解SP和0.5 M tfa -水解SP的透明质酸酶抑制活性显著低于天然SP,表明硫酸盐含量或分子量对透明质酸酶的抑制作用很重要。