Identification and Characterization of Dextran α-1,2-Debranching Enzyme from Microbacterium dextranolyticum.

IF 1.2 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of applied glycoscience Pub Date : 2023-01-01 DOI:10.5458/jag.jag.JAG-2022_0013
Takatsugu Miyazaki, Hidekazu Tanaka, Shuntaro Nakamura, Hideo Dohra, Kazumi Funane
{"title":"Identification and Characterization of Dextran α-1,2-Debranching Enzyme from <i>Microbacterium dextranolyticum</i>.","authors":"Takatsugu Miyazaki,&nbsp;Hidekazu Tanaka,&nbsp;Shuntaro Nakamura,&nbsp;Hideo Dohra,&nbsp;Kazumi Funane","doi":"10.5458/jag.jag.JAG-2022_0013","DOIUrl":null,"url":null,"abstract":"<p><p>Dextran α-1,2-debranching enzyme (DDE) releases glucose with hydrolyzing α-(1→2)-glucosidic linkages in α-glucans, which are made up of dextran with α-(1→2)-branches and are generated by <i>Leuconostoc</i> bacteria. DDE was isolated from <i>Microbacterium dextranolyticum</i> (formerly known as <i>Flavobacterium</i> sp. M-73) 40 years ago, although the amino acid sequence of the enzyme has not been determined. Herein, we found a gene for this enzyme based on the partial amino acid sequences from native DDE and characterized the recombinant enzyme. DDE had a signal peptide, a glycoside hydrolase family 65 domain, a carbohydrate-binding module family 35 domain, a domain (D-domain) similar to the C-terminal domain of <i>Arthrobacter globiformis</i> glucodextranase, and a transmembrane region at the C-terminus. Recombinant DDE released glucose from α-(1→2)-branched α-glucans produced by <i>Leuconostoc citreum</i> strains B-1299, S-32, and S-64 and showed weak hydrolytic activity with kojibiose and kojitriose. No activity was detected for commercial dextran and <i>Leuconostoc citreum</i> B-1355 α-glucan, which do not contain α-(1→2)-linkages. The removal of the D-domain decreased the affinity for α-(1→2)-branched α-glucans but not for kojioligosaccharides, suggesting that D-domain plays a role in α-glucan binding. Genes for putative dextranases, oligo-1,6-glucosidase, sugar-binding protein, and permease were present in the vicinity of the DDE gene, and as a result these gene products may be necessary for the use of α-(1→2)-branched glucans. Our findings shed new light on how actinobacteria utilize polysaccharides produced by lactic acid bacteria.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/3b/70_jag.JAG-2022_0013.PMC10074034.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2022_0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dextran α-1,2-debranching enzyme (DDE) releases glucose with hydrolyzing α-(1→2)-glucosidic linkages in α-glucans, which are made up of dextran with α-(1→2)-branches and are generated by Leuconostoc bacteria. DDE was isolated from Microbacterium dextranolyticum (formerly known as Flavobacterium sp. M-73) 40 years ago, although the amino acid sequence of the enzyme has not been determined. Herein, we found a gene for this enzyme based on the partial amino acid sequences from native DDE and characterized the recombinant enzyme. DDE had a signal peptide, a glycoside hydrolase family 65 domain, a carbohydrate-binding module family 35 domain, a domain (D-domain) similar to the C-terminal domain of Arthrobacter globiformis glucodextranase, and a transmembrane region at the C-terminus. Recombinant DDE released glucose from α-(1→2)-branched α-glucans produced by Leuconostoc citreum strains B-1299, S-32, and S-64 and showed weak hydrolytic activity with kojibiose and kojitriose. No activity was detected for commercial dextran and Leuconostoc citreum B-1355 α-glucan, which do not contain α-(1→2)-linkages. The removal of the D-domain decreased the affinity for α-(1→2)-branched α-glucans but not for kojioligosaccharides, suggesting that D-domain plays a role in α-glucan binding. Genes for putative dextranases, oligo-1,6-glucosidase, sugar-binding protein, and permease were present in the vicinity of the DDE gene, and as a result these gene products may be necessary for the use of α-(1→2)-branched glucans. Our findings shed new light on how actinobacteria utilize polysaccharides produced by lactic acid bacteria.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
葡聚糖α-1,2-脱支酶的鉴定与表征
葡聚糖α-1,2-去分支酶(DDE)通过水解α-葡聚糖中的α-(1→2)-糖苷键释放葡萄糖,α-葡聚糖由葡聚糖和α-(1→2)-分支组成,由Leuconostoc细菌产生。DDE早在40年前就从右旋水解微杆菌(Microbacterium dextranolyticum,原名Flavobacterium sp. M-73)中分离得到,但该酶的氨基酸序列尚未确定。在此,我们根据天然DDE的部分氨基酸序列找到了该酶的基因,并对重组酶进行了表征。DDE具有信号肽、糖苷水解酶家族65结构域、碳水化合物结合模块家族35结构域、与球形节杆菌葡聚糖酶c端结构域相似的结构域(d结构域)以及c端跨膜区域。重组DDE从柠檬酸Leuconostoc citreum菌株B-1299、S-32和S-64产生的α-(1→2)支链α-葡聚糖中释放葡萄糖,对曲糖糖和曲糖糖具有弱水解活性。不含α-(1→2)键的商品葡聚糖和柠檬酸Leuconostoc citreum B-1355 α-葡聚糖无活性。d结构域的去除降低了对α-(1→2)支链α-葡聚糖的亲和力,但对曲寡糖没有影响,表明d结构域在α-葡聚糖结合中起作用。假定的葡聚糖酶、寡聚-1,6-葡萄糖苷酶、糖结合蛋白和渗透酶的基因存在于DDE基因附近,因此这些基因产物可能是使用α-(1→2)支链葡聚糖所必需的。我们的发现揭示了放线菌如何利用乳酸菌产生的多糖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of applied glycoscience
Journal of applied glycoscience BIOCHEMISTRY & MOLECULAR BIOLOGY-
自引率
9.10%
发文量
13
期刊最新文献
A C1/C4-Oxidizing AA10 Lytic Polysaccharide Monooxygenase from Paenibacillus xylaniclasticus Strain TW1. Molecular Weight Distribution of Whole Starch in Rice Endosperm by Gel-permeation Chromatography. Hyaluronidase-inhibiting Polysaccharide from Caulerpa lentillifera. Characterization of an α-L-Arabinofuranosidase GH51 from the Brown-rot Fungus Gloeophyllum trabeum. Identification and Characterization of Dextran α-1,2-Debranching Enzyme from Microbacterium dextranolyticum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1