The Relativistic Proton Spectrometer: A Review of Sensor Performance, Applications, and Science.

IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Space Science Reviews Pub Date : 2023-01-01 DOI:10.1007/s11214-023-00962-2
J E Mazur, T P O'Brien, M D Looper
{"title":"The Relativistic Proton Spectrometer: A Review of Sensor Performance, Applications, and Science.","authors":"J E Mazur,&nbsp;T P O'Brien,&nbsp;M D Looper","doi":"10.1007/s11214-023-00962-2","DOIUrl":null,"url":null,"abstract":"<p><p>The Relativistic Proton Spectrometer (RPS) on the Van Allen Probes spacecraft was a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from <math><mo>∼</mo> <mn>60</mn> <mspace></mspace> <mtext>MeV</mtext></math> to <math><mo>∼</mo> <mn>2000</mn> <mspace></mspace> <mtext>MeV</mtext></math> . RPS provided new information about the inner Van Allen belt: a nearby region of space that had been relatively unexplored because of the difficulties of making charged particle measurements there and the associated hazards to satellite operations. We met the primary mission objective of providing accurate data for the AP9 radiation specification model at the high energies where there were little to no data prior to the Van Allen Probes mission. Along the way, we were able to demonstrate the long-term stability of parts of the Inner Belt by comparison with short-lived space science missions that operated decades prior to Van Allen Probes. The most significant surprises were the agreement between RPS and some of those historical measurements and the discovery of a trapped population of <math><mo>></mo> <mn>30</mn> <mspace></mspace> <mtext>MeV</mtext></math> leptons at the outer edge of the inner belt. This end-of-mission paper summarizes the instrument performance, calibration, data products, and specific science and engineering results, and includes suggestions for future investigations of intense radiation fields like those found within the inner belt.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"219 3","pages":"26"},"PeriodicalIF":9.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076393/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Science Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-023-00962-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Relativistic Proton Spectrometer (RPS) on the Van Allen Probes spacecraft was a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from 60 MeV to 2000 MeV . RPS provided new information about the inner Van Allen belt: a nearby region of space that had been relatively unexplored because of the difficulties of making charged particle measurements there and the associated hazards to satellite operations. We met the primary mission objective of providing accurate data for the AP9 radiation specification model at the high energies where there were little to no data prior to the Van Allen Probes mission. Along the way, we were able to demonstrate the long-term stability of parts of the Inner Belt by comparison with short-lived space science missions that operated decades prior to Van Allen Probes. The most significant surprises were the agreement between RPS and some of those historical measurements and the discovery of a trapped population of > 30 MeV leptons at the outer edge of the inner belt. This end-of-mission paper summarizes the instrument performance, calibration, data products, and specific science and engineering results, and includes suggestions for future investigations of intense radiation fields like those found within the inner belt.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相对论质子谱仪:传感器性能、应用和科学综述。
范艾伦探测器航天器上的相对论质子谱仪(RPS)是一种粒子谱仪,用于测量从~ 60mev到~ 2000mev的质子的通量、角分布和能谱。RPS提供了关于范艾伦带内部的新信息。范艾伦带是附近的一个空间区域,由于在那里进行带电粒子测量的困难和卫星操作的相关危险,它相对未被探索。我们达到了主要的任务目标,为AP9辐射规范模型在高能量下提供准确的数据,而在范艾伦探测器任务之前几乎没有数据。在此过程中,我们能够通过与范艾伦探测器之前几十年的短期太空科学任务进行比较来证明内带部分地区的长期稳定性。最令人惊讶的是RPS和一些历史测量结果之间的一致,以及在内带的外边缘发现了一个> 30兆电子伏的被困轻子群。这篇结束任务的论文总结了仪器的性能、校准、数据产品和具体的科学和工程结果,并包括对未来研究强辐射场的建议,比如在内带中发现的那些。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Space Science Reviews
Space Science Reviews 地学天文-天文与天体物理
CiteScore
19.70
自引率
3.90%
发文量
60
审稿时长
4-8 weeks
期刊介绍: Space Science Reviews (SSRv) stands as an international journal dedicated to scientific space research, offering a contemporary synthesis across various branches of space exploration. Emphasizing scientific outcomes and instruments, SSRv spans astrophysics, physics of planetary systems, solar physics, and the physics of magnetospheres & interplanetary matter. Beyond Topical Collections and invited Review Articles, Space Science Reviews welcomes unsolicited Review Articles and Special Communications. The latter encompass papers related to a prior topical volume/collection, report-type papers, or timely contributions addressing a robust combination of space science and technology. These papers succinctly summarize both the science and technology aspects of instruments or missions in a single publication.
期刊最新文献
Effects of Oxytocin on Glutamate Mediated Neurotoxicity in Neuroblastoma Cell Culture. The Lucy Thermal Emission Spectrometer (L'TES) Instrument. The Comet Interceptor Mission. Multiple Probe Measurements at Uranus Motivated by Spatial Variability. The Lunar Environment Heliophysics X-ray Imager (LEXI) Mission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1