Fiber biodurability and biopersistence: historical toxicological perspective of synthetic vitreous fibers (SVFs), the long fiber paradigm, and implications for advanced materials.
{"title":"Fiber biodurability and biopersistence: historical toxicological perspective of synthetic vitreous fibers (SVFs), the long fiber paradigm, and implications for advanced materials.","authors":"Amy K Madl, Heidi C O'Neill","doi":"10.1080/10408444.2022.2154636","DOIUrl":null,"url":null,"abstract":"<p><p>Extensive toxicology studies of synthetic vitreous fibers (SVFs) demonstrated that fiber dimension, durability/dissolution, and biopersistence are critical factors for risk of fibrogenesis and carcinogenesis. Lessons learned from the SVF experience provide useful context for predicting hazards and risk of nano-enabled advanced materials. This review provides (1) a historical toxicological overview of animal and <i>in vitro</i> toxicology studies of SVFs, (2) key findings that long durable fibers pose a risk of fibrogenic and tumorigenic responses and not short fibers or long soluble fibers, (3) <i>in vitro</i> and <i>in vivo</i> test methods for biodurability and biopersistence and associated predictive thresholds for fibrosis or tumors, and (4) recommendations for testing of advanced materials. Generally, SVFs (fiber lengths >20 µm) with <i>in vitro</i> fiber dissolution rates greater than 100 ng/cm<sup>2</sup>/hr (glass fibers in pH 7 and stone fibers in pH 4.5) and <i>in vivo</i> fiber clearance less than WT<sub>1/2</sub> 40 or 50 days were not associated with fibrosis or tumors. Long biodurable and biopersistent fibers exceeding these fiber dissolution and clearance thresholds may pose a risk of fibrosis and cancer. Fiber length-, durability-, and biopersistent-dependent factors that influence pathogenicity of mineral fibers are also expected to affect the biological effects of high aspect ratio nanomaterials (HARN). Only with studies aimed to correlate <i>in vitro</i> durability, <i>in vivo</i> biopersistence, and biological outcomes will it be determined whether similar or different <i>in vitro</i> fiber dissolution and <i>in vivo</i> half-life thresholds, which exempt carcinogenicity classification of SVFs, can also apply to HARNs.</p>","PeriodicalId":10869,"journal":{"name":"Critical Reviews in Toxicology","volume":"52 10","pages":"811-866"},"PeriodicalIF":5.7000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10408444.2022.2154636","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Extensive toxicology studies of synthetic vitreous fibers (SVFs) demonstrated that fiber dimension, durability/dissolution, and biopersistence are critical factors for risk of fibrogenesis and carcinogenesis. Lessons learned from the SVF experience provide useful context for predicting hazards and risk of nano-enabled advanced materials. This review provides (1) a historical toxicological overview of animal and in vitro toxicology studies of SVFs, (2) key findings that long durable fibers pose a risk of fibrogenic and tumorigenic responses and not short fibers or long soluble fibers, (3) in vitro and in vivo test methods for biodurability and biopersistence and associated predictive thresholds for fibrosis or tumors, and (4) recommendations for testing of advanced materials. Generally, SVFs (fiber lengths >20 µm) with in vitro fiber dissolution rates greater than 100 ng/cm2/hr (glass fibers in pH 7 and stone fibers in pH 4.5) and in vivo fiber clearance less than WT1/2 40 or 50 days were not associated with fibrosis or tumors. Long biodurable and biopersistent fibers exceeding these fiber dissolution and clearance thresholds may pose a risk of fibrosis and cancer. Fiber length-, durability-, and biopersistent-dependent factors that influence pathogenicity of mineral fibers are also expected to affect the biological effects of high aspect ratio nanomaterials (HARN). Only with studies aimed to correlate in vitro durability, in vivo biopersistence, and biological outcomes will it be determined whether similar or different in vitro fiber dissolution and in vivo half-life thresholds, which exempt carcinogenicity classification of SVFs, can also apply to HARNs.
期刊介绍:
Critical Reviews in Toxicology provides up-to-date, objective analyses of topics related to the mechanisms of action, responses, and assessment of health risks due to toxicant exposure. The journal publishes critical, comprehensive reviews of research findings in toxicology and the application of toxicological information in assessing human health hazards and risks. Toxicants of concern include commodity and specialty chemicals such as formaldehyde, acrylonitrile, and pesticides; pharmaceutical agents of all types; consumer products such as macronutrients and food additives; environmental agents such as ambient ozone; and occupational exposures such as asbestos and benzene.