Juan Sebastian Chahda, Priscilla Ambrosi, Claudia M. Mizutani
{"title":"The nested embryonic dorsal domains of BMP-target genes are not scaled to size during the evolution of Drosophila species","authors":"Juan Sebastian Chahda, Priscilla Ambrosi, Claudia M. Mizutani","doi":"10.1002/jez.b.23137","DOIUrl":null,"url":null,"abstract":"<p>Egg size is a fast-evolving trait among Drosophilids expected to change the spatial distribution of morphogens that pattern the embryonic axes. Here we asked whether the patterning of the dorsal region of the embryo by the Decapentaplegic/Bone Morphogenetic Protein-4 (DPP/BMP-4) gradient is scaled among <i>Drosophila</i> species with different egg sizes. This region specifies the extra-embryonic tissue amnioserosa and the ectoderm. We find that the entire dorsal region scales with embryo size, but the gene expression patterns regulated by DPP are not proportional, suggesting that the DPP gradient is differentially scaled during evolution. To further test whether the DPP gradient can scale or not in <i>Drosophila melanogaster</i>, we created embryos with expanded dorsal regions that mimic changes in scale seen in other species and measured the resulting domains of DPP-target genes. We find that the proportions of these domains are not maintained, suggesting that the DPP gradient is unable to scale in the embryo. These and previous findings suggest that the embryonic dorso-ventral patterning lack scaling in the ventral and dorsal sides but is robust in the lateral region where the neuroectoderm is specified and two opposing gradients, Dorsal/NFkappa-B and DPP, intersect. We propose that the lack of scaling of the DPP gradient may contribute to changes in the size of the amnioserosa and the numbers of ectodermal cells with specific cortical tensions, which are expected to generate distinct mechanical forces for gastrulating embryos of different sizes.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b4/9a/JEZ-340-131.PMC9587137.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23137","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Egg size is a fast-evolving trait among Drosophilids expected to change the spatial distribution of morphogens that pattern the embryonic axes. Here we asked whether the patterning of the dorsal region of the embryo by the Decapentaplegic/Bone Morphogenetic Protein-4 (DPP/BMP-4) gradient is scaled among Drosophila species with different egg sizes. This region specifies the extra-embryonic tissue amnioserosa and the ectoderm. We find that the entire dorsal region scales with embryo size, but the gene expression patterns regulated by DPP are not proportional, suggesting that the DPP gradient is differentially scaled during evolution. To further test whether the DPP gradient can scale or not in Drosophila melanogaster, we created embryos with expanded dorsal regions that mimic changes in scale seen in other species and measured the resulting domains of DPP-target genes. We find that the proportions of these domains are not maintained, suggesting that the DPP gradient is unable to scale in the embryo. These and previous findings suggest that the embryonic dorso-ventral patterning lack scaling in the ventral and dorsal sides but is robust in the lateral region where the neuroectoderm is specified and two opposing gradients, Dorsal/NFkappa-B and DPP, intersect. We propose that the lack of scaling of the DPP gradient may contribute to changes in the size of the amnioserosa and the numbers of ectodermal cells with specific cortical tensions, which are expected to generate distinct mechanical forces for gastrulating embryos of different sizes.
期刊介绍:
Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms.
The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB.
We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.