NMSDR: Drug repurposing approach based on transcriptome data and network module similarity.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Molecular Informatics Pub Date : 2023-03-01 DOI:10.1002/minf.202200077
Ülkü Ünsal, Ali Cüvitoğlu, Kemal Turhan, Zerrin Işik
{"title":"NMSDR: Drug repurposing approach based on transcriptome data and network module similarity.","authors":"Ülkü Ünsal,&nbsp;Ali Cüvitoğlu,&nbsp;Kemal Turhan,&nbsp;Zerrin Işik","doi":"10.1002/minf.202200077","DOIUrl":null,"url":null,"abstract":"<p><p>Computational drug repurposing aims to discover new treatment regimens by analyzing approved drugs on the market. This study proposes previously approved compounds that can change the expression profile of disease-causing proteins by developing a network theory-based drug repurposing approach. The novelty of the proposed approach is an exploration of module similarity between a disease-causing network and a compound-specific interaction network; thus, such an association leads to more realistic modeling of molecular cell responses at a system biology level. The overlap of the disease network and each compound-specific network is calculated based on a shortest-path similarity of networks by accounting for all protein pairs between networks. A higher similarity score indicates a significant potential of a compound. The approach was validated for breast and lung cancers. When all compounds are sorted by their normalized-similarity scores, 36 and 16 drugs are proposed as new candidates for breast and lung cancer treatment, respectively. A literature survey on candidate compounds revealed that some of our predictions have been clinically investigated in phase II/III trials for the treatment of two cancer types. As a summary, the proposed approach has provided promising initial results by modeling biochemical cell responses in a network-level data representation.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202200077","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Computational drug repurposing aims to discover new treatment regimens by analyzing approved drugs on the market. This study proposes previously approved compounds that can change the expression profile of disease-causing proteins by developing a network theory-based drug repurposing approach. The novelty of the proposed approach is an exploration of module similarity between a disease-causing network and a compound-specific interaction network; thus, such an association leads to more realistic modeling of molecular cell responses at a system biology level. The overlap of the disease network and each compound-specific network is calculated based on a shortest-path similarity of networks by accounting for all protein pairs between networks. A higher similarity score indicates a significant potential of a compound. The approach was validated for breast and lung cancers. When all compounds are sorted by their normalized-similarity scores, 36 and 16 drugs are proposed as new candidates for breast and lung cancer treatment, respectively. A literature survey on candidate compounds revealed that some of our predictions have been clinically investigated in phase II/III trials for the treatment of two cancer types. As a summary, the proposed approach has provided promising initial results by modeling biochemical cell responses in a network-level data representation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NMSDR:基于转录组数据和网络模块相似性的药物再利用方法。
计算药物再利用旨在通过分析市场上已批准的药物来发现新的治疗方案。本研究通过开发基于网络理论的药物再利用方法,提出了先前批准的可以改变致病蛋白表达谱的化合物。该方法的新颖之处在于探索致病网络和化合物特异性相互作用网络之间的模块相似性;因此,这种关联导致在系统生物学水平上对分子细胞反应进行更现实的建模。通过计算网络之间所有蛋白质对,基于网络的最短路径相似性计算疾病网络和每个化合物特异性网络的重叠。相似性分数越高,表明该化合物具有显著的潜力。这种方法在治疗乳腺癌和肺癌方面得到了验证。当所有化合物按照标准化相似度评分进行分类时,分别有36种和16种药物被提议作为乳腺癌和肺癌治疗的新候选药物。一项关于候选化合物的文献调查显示,我们的一些预测已经在治疗两种癌症的II/III期临床试验中得到了研究。综上所述,该方法通过在网络级数据表示中建模生化细胞反应,提供了有希望的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
期刊最新文献
Cover Picture: (Mol. Inf. 9/2024) The freedom space - a new set of commercially available molecules for hit discovery. Cover Picture: (Mol. Inf. 8/2024) Chemography-guided analysis of a reaction path network for ethylene hydrogenation with a model Wilkinson's catalyst. Sulfotransferase-mediated phase II drug metabolism prediction of substrates and sites using accessibility and reactivity-based algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1