Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nature Materials Pub Date : 2023-03-23 DOI:10.1038/s41563-023-01485-5
Joohoon Kim, Junhwa Seong, Wonjoong Kim, Gun-Yeal Lee, Seokwoo Kim, Hongyoon Kim, Seong-Won Moon, Dong Kyo Oh, Younghwan Yang, Jeonghoon Park, Jaehyuck Jang, Yeseul Kim, Minsu Jeong, Chanwoong Park, Hojung Choi, Gyoseon Jeon, Kyung-il Lee, Dong Hyun Yoon, Namkyoo Park, Byoungho Lee, Heon Lee, Junsuk Rho
{"title":"Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible","authors":"Joohoon Kim, Junhwa Seong, Wonjoong Kim, Gun-Yeal Lee, Seokwoo Kim, Hongyoon Kim, Seong-Won Moon, Dong Kyo Oh, Younghwan Yang, Jeonghoon Park, Jaehyuck Jang, Yeseul Kim, Minsu Jeong, Chanwoong Park, Hojung Choi, Gyoseon Jeon, Kyung-il Lee, Dong Hyun Yoon, Namkyoo Park, Byoungho Lee, Heon Lee, Junsuk Rho","doi":"10.1038/s41563-023-01485-5","DOIUrl":null,"url":null,"abstract":"Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices. The authors propose a method for the scalable manufacturing of metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography, opening a route towards their low-cost, high-throughput mass production.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":null,"pages":null},"PeriodicalIF":37.2000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-023-01485-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 19

Abstract

Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices. The authors propose a method for the scalable manufacturing of metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography, opening a route towards their low-cost, high-throughput mass production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可扩展制造用于可见光下超光子学的高指数原子层-聚合物混合超表面
金属透镜具有优越的光调节性能和亚微米级的厚度,是传统笨重折射透镜的诱人替代品;然而,现有制造技术的局限性,包括成本高、产量低和图案面积小,阻碍了金属透镜的大规模生产。在这里,我们展示了利用深紫外氟化氩浸渍光刻技术和晶圆级纳米压印光刻技术,低成本、高通量地量产大孔径可见金属透镜。一旦压印出一个 12 英寸的主印章,就可以利用薄涂层高指数薄膜制造出数百厘米级的金属透镜,以增强光约束,从而大幅提高转换效率。作为概念验证,利用印刷金属膜制作的超薄虚拟现实设备展示了其在可扩展地制造元光子设备方面的潜力。作者提出了一种利用深紫外氩氟化物浸渍光刻技术和晶圆级纳米压印光刻技术可扩展地制造金属透镜的方法,为其低成本、高通量的大规模生产开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
期刊最新文献
A refresh-in-sensing reusable biosensor Ion-mediated condensation controls the mechanics of mitotic chromosomes Visualizing the moiré of moiré Delocalizing electron distribution in thermally activated delayed fluorophors for high-efficiency and long-lifetime blue electroluminescence Spin Hall-induced bilinear magnetoelectric resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1