Kiran Kumar Patro , Allam Jaya Prakash , Mohamed Hammad , Ryszard Tadeusiewicz , Paweł Pławiak
{"title":"SCovNet: A skip connection-based feature union deep learning technique with statistical approach analysis for the detection of COVID-19","authors":"Kiran Kumar Patro , Allam Jaya Prakash , Mohamed Hammad , Ryszard Tadeusiewicz , Paweł Pławiak","doi":"10.1016/j.bbe.2023.01.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><p>The global population has been heavily impacted by the COVID-19 pandemic of coronavirus. Infections are spreading quickly around the world, and new spikes (Delta, Delta Plus, and Omicron) are still being made. The real-time reverse transcription-polymerase chain reaction (RT-PCR) is the method most often used to find viral RNA in a nasopharyngeal swab. However, these diagnostic approaches require human involvement and consume more time per prediction. Moreover, the existing conventional test mainly suffers from false negatives, so there is a chance for the virus to spread quickly. Therefore, a rapid and early diagnosis of COVID-19 patients is needed to overcome these problems.</p></div><div><h3>Methods</h3><p>Existing approaches based on deep learning for COVID detection are suffering from unbalanced datasets, poor performance, and gradient vanishing problems. A customized skip connection-based network with a feature union approach has been developed in this work to overcome some of the issues mentioned above. Gradient information from chest X-ray (CXR) images to subsequent layers is bypassed through skip connections. In the script’s title, “SCovNet” refers to a skip-connection-based feature union network for detecting COVID-19 in a short notation. The performance of the proposed model was tested with two publicly available CXR image databases, including balanced and unbalanced datasets.</p></div><div><h3>Results</h3><p>A modified skip connection-based CNN model was suggested for a small unbalanced dataset (Kaggle) and achieved remarkable performance. In addition, the proposed model was also tested with a large GitHub database of CXR images and obtained an overall best accuracy of 98.67% with an impressive low false-negative rate of 0.0074.</p></div><div><h3>Conclusions</h3><p>The results of the experiments show that the proposed method works better than current methods at finding early signs of COVID-19. As an additional point of interest, we must mention the innovative hierarchical classification strategy provided for this work, which considered both balanced and unbalanced datasets to get the best COVID-19 identification rate.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928742/pdf/","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521623000050","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 11
Abstract
Background and Objective
The global population has been heavily impacted by the COVID-19 pandemic of coronavirus. Infections are spreading quickly around the world, and new spikes (Delta, Delta Plus, and Omicron) are still being made. The real-time reverse transcription-polymerase chain reaction (RT-PCR) is the method most often used to find viral RNA in a nasopharyngeal swab. However, these diagnostic approaches require human involvement and consume more time per prediction. Moreover, the existing conventional test mainly suffers from false negatives, so there is a chance for the virus to spread quickly. Therefore, a rapid and early diagnosis of COVID-19 patients is needed to overcome these problems.
Methods
Existing approaches based on deep learning for COVID detection are suffering from unbalanced datasets, poor performance, and gradient vanishing problems. A customized skip connection-based network with a feature union approach has been developed in this work to overcome some of the issues mentioned above. Gradient information from chest X-ray (CXR) images to subsequent layers is bypassed through skip connections. In the script’s title, “SCovNet” refers to a skip-connection-based feature union network for detecting COVID-19 in a short notation. The performance of the proposed model was tested with two publicly available CXR image databases, including balanced and unbalanced datasets.
Results
A modified skip connection-based CNN model was suggested for a small unbalanced dataset (Kaggle) and achieved remarkable performance. In addition, the proposed model was also tested with a large GitHub database of CXR images and obtained an overall best accuracy of 98.67% with an impressive low false-negative rate of 0.0074.
Conclusions
The results of the experiments show that the proposed method works better than current methods at finding early signs of COVID-19. As an additional point of interest, we must mention the innovative hierarchical classification strategy provided for this work, which considered both balanced and unbalanced datasets to get the best COVID-19 identification rate.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.