{"title":"Does visual acuity predict visual preference in progressive addition lenses?","authors":"Richard Legras , Marc Vincent , Gildas Marin","doi":"10.1016/j.optom.2022.04.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>We aimed to determine if visual acuity (VA) could differentiate the quality of vision with two ophthalmic lenses with unwanted astigmatism.</p></div><div><h3>Methods</h3><p>Twenty presbyopic subjects (48 to 62 years old; VA better than 0.0 logMAR) graded the magnitude of their preference between two progressive addition lenses (plano addition 2.00D) and their visual acuities were measured with both lenses at various eccentricities from -12 to +12 mm from the near vision point every 3 mm in controlled conditions.</p></div><div><h3>Results</h3><p>The Lens with the least peripheral astigmatism was preferred by 75% of the subjects. VA measured at the near vision point was statistically worse (p<0.01) with this lens whereas the contrary was observed in the periphery (± 12 and -9 mm of eccentricity). The Friedman test shows that the eccentricity (p<0.001) has a significant effect on visual acuity. However, the lens did not show any significant effect (p=0.76). The choice of the favorite lens was predicted for only 35% when considering central VA (up to 6mm) and 80% of the subjects when considering peripheral VA (9 to 12mm). However, the magnitude of the difference could be predicted by peripheral VA in only 60% of the subjects.</p></div><div><h3>Conclusion</h3><p>High contrast Visual acuity was clearly able to differentiate the 2 lens designs tested in our experiment. However, even under the controlled conditions of this study, it was not possible to predict the quality of vision, as measured by a subjective appreciation, through progressive addition lenses at various eccentricities from the near vision with an addition of 2.0D.</p></div>","PeriodicalId":46407,"journal":{"name":"Journal of Optometry","volume":"16 2","pages":"Pages 91-99"},"PeriodicalIF":2.2000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104795/pdf/main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optometry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S188842962200019X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Purpose
We aimed to determine if visual acuity (VA) could differentiate the quality of vision with two ophthalmic lenses with unwanted astigmatism.
Methods
Twenty presbyopic subjects (48 to 62 years old; VA better than 0.0 logMAR) graded the magnitude of their preference between two progressive addition lenses (plano addition 2.00D) and their visual acuities were measured with both lenses at various eccentricities from -12 to +12 mm from the near vision point every 3 mm in controlled conditions.
Results
The Lens with the least peripheral astigmatism was preferred by 75% of the subjects. VA measured at the near vision point was statistically worse (p<0.01) with this lens whereas the contrary was observed in the periphery (± 12 and -9 mm of eccentricity). The Friedman test shows that the eccentricity (p<0.001) has a significant effect on visual acuity. However, the lens did not show any significant effect (p=0.76). The choice of the favorite lens was predicted for only 35% when considering central VA (up to 6mm) and 80% of the subjects when considering peripheral VA (9 to 12mm). However, the magnitude of the difference could be predicted by peripheral VA in only 60% of the subjects.
Conclusion
High contrast Visual acuity was clearly able to differentiate the 2 lens designs tested in our experiment. However, even under the controlled conditions of this study, it was not possible to predict the quality of vision, as measured by a subjective appreciation, through progressive addition lenses at various eccentricities from the near vision with an addition of 2.0D.