Implications of mitochondrial fusion and fission in skeletal muscle mass and health

IF 6.2 2区 生物学 Q1 CELL BIOLOGY Seminars in cell & developmental biology Pub Date : 2023-07-15 DOI:10.1016/j.semcdb.2022.02.011
Vanina Romanello , Marco Sandri
{"title":"Implications of mitochondrial fusion and fission in skeletal muscle mass and health","authors":"Vanina Romanello ,&nbsp;Marco Sandri","doi":"10.1016/j.semcdb.2022.02.011","DOIUrl":null,"url":null,"abstract":"<div><p><span>The continuous dynamic reshaping of mitochondria by fusion and fission events is critical to keep mitochondrial quality and function under control in response to changes in energy and stress. Maintaining a functional, highly interconnected mitochondrial reticulum ensures rapid energy production and distribution. Moreover, mitochondrial networks act as dynamic signaling hub to adapt to the metabolic demands imposed by contraction, energy expenditure, and general metabolism. However, excessive mitochondrial fusion<span> or fission results in the disruption of the skeletal muscle mitochondrial network integrity and activates a retrograde response from mitochondria to the nucleus, leading to muscle atrophy, weakness and influencing whole-body homeostasis. These actions are mediated via the secretion of mitochondrial-stress myokines such as </span></span>FGF21<span> and GDF15. Here we will summarize recent discoveries in the role of mitochondrial fusion and fission in the control of muscle mass and in regulating physiological homeostasis and disease progression.</span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"143 ","pages":"Pages 46-53"},"PeriodicalIF":6.2000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cell & developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084952122000507","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 10

Abstract

The continuous dynamic reshaping of mitochondria by fusion and fission events is critical to keep mitochondrial quality and function under control in response to changes in energy and stress. Maintaining a functional, highly interconnected mitochondrial reticulum ensures rapid energy production and distribution. Moreover, mitochondrial networks act as dynamic signaling hub to adapt to the metabolic demands imposed by contraction, energy expenditure, and general metabolism. However, excessive mitochondrial fusion or fission results in the disruption of the skeletal muscle mitochondrial network integrity and activates a retrograde response from mitochondria to the nucleus, leading to muscle atrophy, weakness and influencing whole-body homeostasis. These actions are mediated via the secretion of mitochondrial-stress myokines such as FGF21 and GDF15. Here we will summarize recent discoveries in the role of mitochondrial fusion and fission in the control of muscle mass and in regulating physiological homeostasis and disease progression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线粒体融合和裂变对骨骼肌质量和健康的影响
融合和裂变事件对线粒体的持续动态重塑对于控制线粒体的质量和功能以应对能量和压力的变化至关重要。维持一个功能性的、高度互联的线粒体网确保了能量的快速产生和分配。此外,线粒体网络充当动态信号中枢,以适应收缩、能量消耗和一般代谢带来的代谢需求。然而,过度的线粒体融合或分裂会导致骨骼肌线粒体网络完整性的破坏,并激活从线粒体到细胞核的逆行反应,导致肌肉萎缩、虚弱并影响全身稳态。这些作用是通过线粒体应激性肌细胞因子如FGF21和GDF15的分泌介导的。在这里,我们将总结线粒体融合和分裂在控制肌肉质量、调节生理稳态和疾病进展中的作用的最新发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.10
自引率
1.40%
发文量
310
审稿时长
9.1 weeks
期刊介绍: Seminars in Cell and Developmental Biology is a review journal dedicated to keeping scientists informed of developments in the field of molecular cell and developmental biology, on a topic by topic basis. Each issue is thematic in approach, devoted to an important topic of interest to cell and developmental biologists, focusing on the latest advances and their specific implications. The aim of each issue is to provide a coordinated, readable, and lively review of a selected area, published rapidly to ensure currency.
期刊最新文献
Diverse genetic conflicts mediated by molecular mimicry and computational approaches to detect them Outside Front Cover Editorial Board/Publication Information From the cauldron of conflict: Endogenous gene regulation by piRNA and other modes of adaptation enabled by selfish transposable elements Outside Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1