{"title":"Self-supervised zero-shot dehazing network based on dark channel prior.","authors":"Xinjie Xiao, Yuanhong Ren, Zhiwei Li, Nannan Zhang, Wuneng Zhou","doi":"10.1007/s12200-023-00062-7","DOIUrl":null,"url":null,"abstract":"<p><p>Most learning-based methods previously used in image dehazing employ a supervised learning strategy, which is time-consuming and requires a large-scale dataset. However, large-scale datasets are difficult to obtain. Here, we propose a self-supervised zero-shot dehazing network (SZDNet) based on dark channel prior, which uses a hazy image generated from the output dehazed image as a pseudo-label to supervise the optimization process of the network. Additionally, we use a novel multichannel quad-tree algorithm to estimate atmospheric light values, which is more accurate than previous methods. Furthermore, the sum of the cosine distance and the mean squared error between the pseudo-label and the input image is applied as a loss function to enhance the quality of the dehazed image. The most significant advantage of the SZDNet is that it does not require a large dataset for training before performing the dehazing task. Extensive testing shows promising performances of the proposed method in both qualitative and quantitative evaluations when compared with state-of-the-art methods.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"16 1","pages":"7"},"PeriodicalIF":4.1000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102283/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-023-00062-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Most learning-based methods previously used in image dehazing employ a supervised learning strategy, which is time-consuming and requires a large-scale dataset. However, large-scale datasets are difficult to obtain. Here, we propose a self-supervised zero-shot dehazing network (SZDNet) based on dark channel prior, which uses a hazy image generated from the output dehazed image as a pseudo-label to supervise the optimization process of the network. Additionally, we use a novel multichannel quad-tree algorithm to estimate atmospheric light values, which is more accurate than previous methods. Furthermore, the sum of the cosine distance and the mean squared error between the pseudo-label and the input image is applied as a loss function to enhance the quality of the dehazed image. The most significant advantage of the SZDNet is that it does not require a large dataset for training before performing the dehazing task. Extensive testing shows promising performances of the proposed method in both qualitative and quantitative evaluations when compared with state-of-the-art methods.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more