Intelligent Electrocardiogram Analysis in Medicine: Data, Methods, and Applications

Q2 Medicine Chinese Medical Sciences Journal Pub Date : 2023-03-01 DOI:10.24920/004160
Yu-Xia Guan , Ying An , Feng-Yi Guo , Wei-Bai Pan , Jian-Xin Wang
{"title":"Intelligent Electrocardiogram Analysis in Medicine: Data, Methods, and Applications","authors":"Yu-Xia Guan ,&nbsp;Ying An ,&nbsp;Feng-Yi Guo ,&nbsp;Wei-Bai Pan ,&nbsp;Jian-Xin Wang","doi":"10.24920/004160","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocardiogram (ECG) is a low-cost, simple, fast, and non-invasive test. It can reflect the heart's electrical activity and provide valuable diagnostic clues about the health of the entire body. Therefore, ECG has been widely used in various biomedical applications such as arrhythmia detection, disease-specific detection, mortality prediction, and biometric recognition. In recent years, ECG-related studies have been carried out using a variety of publicly available datasets, with many differences in the datasets used, data preprocessing methods, targeted challenges, and modeling and analysis techniques. Here we systematically summarize and analyze the ECG-based automatic analysis methods and applications. Specifically, we first reviewed 22 commonly used ECG public datasets and provided an overview of data preprocessing processes. Then we described some of the most widely used applications of ECG signals and analyzed the advanced methods involved in these applications. Finally, we elucidated some of the challenges in ECG analysis and provided suggestions for further research.</p></div>","PeriodicalId":35615,"journal":{"name":"Chinese Medical Sciences Journal","volume":"38 1","pages":"Pages 38-48"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medical Sciences Journal","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001929423000172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocardiogram (ECG) is a low-cost, simple, fast, and non-invasive test. It can reflect the heart's electrical activity and provide valuable diagnostic clues about the health of the entire body. Therefore, ECG has been widely used in various biomedical applications such as arrhythmia detection, disease-specific detection, mortality prediction, and biometric recognition. In recent years, ECG-related studies have been carried out using a variety of publicly available datasets, with many differences in the datasets used, data preprocessing methods, targeted challenges, and modeling and analysis techniques. Here we systematically summarize and analyze the ECG-based automatic analysis methods and applications. Specifically, we first reviewed 22 commonly used ECG public datasets and provided an overview of data preprocessing processes. Then we described some of the most widely used applications of ECG signals and analyzed the advanced methods involved in these applications. Finally, we elucidated some of the challenges in ECG analysis and provided suggestions for further research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医学中的智能心电图分析:数据、方法和应用
心电图是一种低成本、简单、快速、无创的检测方法。它可以反映心脏的电活动,并为整个身体的健康提供有价值的诊断线索。因此,心电图已被广泛应用于各种生物医学应用,如心律失常检测、疾病特异性检测、死亡率预测和生物识别。近年来,使用各种公开可用的数据集进行了心电图相关研究,在使用的数据集、数据预处理方法、有针对性的挑战以及建模和分析技术方面存在许多差异。在这里,我们系统地总结和分析了基于心电图的自动分析方法和应用。具体而言,我们首先回顾了22个常用的ECG公共数据集,并对数据预处理过程进行了概述。然后,我们描述了心电信号的一些最广泛应用,并分析了这些应用中涉及的先进方法。最后,我们阐明了心电图分析中的一些挑战,并为进一步的研究提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Medical Sciences Journal
Chinese Medical Sciences Journal Medicine-Medicine (all)
CiteScore
2.40
自引率
0.00%
发文量
1275
期刊最新文献
UBE2C as an Immune-Related Biomarker for Breast Cancer: A Study Based on Multiple Databases Linggui Zhugan Decoction Improves High Glucose-Induced Autophagy in Podocytes Alignment Techniques in Total Knee Arthroplasty: Where do We Stand Today? Vascular Calcification: Where is the Cure? BILL Strategy: Points to Consider During the Performance and Interpretation of Critical Care Echocardiography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1