Integer Programming for Learning Directed Acyclic Graphs from Continuous Data.

INFORMS journal on optimization Pub Date : 2021-01-01 Epub Date: 2020-11-03 DOI:10.1287/ijoo.2019.0040
Hasan Manzour, Simge Küçükyavuz, Hao-Hsiang Wu, Ali Shojaie
{"title":"Integer Programming for Learning Directed Acyclic Graphs from Continuous Data.","authors":"Hasan Manzour, Simge Küçükyavuz, Hao-Hsiang Wu, Ali Shojaie","doi":"10.1287/ijoo.2019.0040","DOIUrl":null,"url":null,"abstract":"<p><p>Learning directed acyclic graphs (DAGs) from data is a challenging task both in theory and in practice, because the number of possible DAGs scales superexponentially with the number of nodes. In this paper, we study the problem of learning an optimal DAG from continuous observational data. We cast this problem in the form of a mathematical programming model that can naturally incorporate a superstructure to reduce the set of possible candidate DAGs. We use a negative log-likelihood score function with both <math> <mrow><msub><mi>ℓ</mi> <mn>0</mn></msub> </mrow> </math> and <math> <mrow><msub><mi>ℓ</mi> <mn>1</mn></msub> </mrow> </math> penalties and propose a new mixed-integer quadratic program, referred to as a layered network (LN) formulation. The LN formulation is a compact model that enjoys as tight an optimal continuous relaxation value as the stronger but larger formulations under a mild condition. Computational results indicate that the proposed formulation outperforms existing mathematical formulations and scales better than available algorithms that can solve the same problem with only <math> <mrow><msub><mi>ℓ</mi> <mn>1</mn></msub> </mrow> </math> regularization. In particular, the LN formulation clearly outperforms existing methods in terms of computational time needed to find an optimal DAG in the presence of a sparse superstructure.</p>","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":"3 1","pages":"46-73"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088505/pdf/nihms-1885648.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2019.0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning directed acyclic graphs (DAGs) from data is a challenging task both in theory and in practice, because the number of possible DAGs scales superexponentially with the number of nodes. In this paper, we study the problem of learning an optimal DAG from continuous observational data. We cast this problem in the form of a mathematical programming model that can naturally incorporate a superstructure to reduce the set of possible candidate DAGs. We use a negative log-likelihood score function with both 0 and 1 penalties and propose a new mixed-integer quadratic program, referred to as a layered network (LN) formulation. The LN formulation is a compact model that enjoys as tight an optimal continuous relaxation value as the stronger but larger formulations under a mild condition. Computational results indicate that the proposed formulation outperforms existing mathematical formulations and scales better than available algorithms that can solve the same problem with only 1 regularization. In particular, the LN formulation clearly outperforms existing methods in terms of computational time needed to find an optimal DAG in the presence of a sparse superstructure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从连续数据中学习有向无环图的整数编程。
从数据中学习有向无环图(DAG)无论在理论上还是在实践中都是一项具有挑战性的任务,因为可能的 DAG 数量与节点数量成超指数关系。本文研究了从连续观测数据中学习最优 DAG 的问题。我们以数学编程模型的形式来解决这个问题,该模型可以自然地结合上层结构来减少可能的候选 DAG 集。我们使用具有 ℓ 0 和 ℓ 1 惩罚的负对数似然得分函数,并提出了一种新的混合整数二次方程程序,称为分层网络(LN)公式。LN 公式是一个紧凑的模型,在温和的条件下,它与更强但更大的公式一样,享有紧密的最优连续松弛值。计算结果表明,所提出的公式优于现有的数学公式,其规模也优于仅用 ℓ 1 正则化就能解决相同问题的现有算法。特别是,在存在稀疏上层结构的情况下,就找到最优 DAG 所需的计算时间而言,LN 公式明显优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Stochastic Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Equality-Constrained Optimization Scenario-Based Robust Optimization for Two-Stage Decision Making Under Binary Uncertainty On the Hardness of Learning from Censored and Nonstationary Demand Temporal Bin Packing with Half-Capacity Jobs Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1