Cerebellar control of thalamocortical circuits for cognitive function: A review of pathways and a proposed mechanism.

IF 3.1 4区 医学 Q2 NEUROSCIENCES Frontiers in Systems Neuroscience Pub Date : 2023-03-30 eCollection Date: 2023-01-01 DOI:10.3389/fnsys.2023.1126508
Detlef H Heck, Mia B Fox, Brittany Correia Chapman, Samuel S McAfee, Yu Liu
{"title":"Cerebellar control of thalamocortical circuits for cognitive function: A review of pathways and a proposed mechanism.","authors":"Detlef H Heck, Mia B Fox, Brittany Correia Chapman, Samuel S McAfee, Yu Liu","doi":"10.3389/fnsys.2023.1126508","DOIUrl":null,"url":null,"abstract":"<p><p>There is general agreement that cerebrocerebellar interactions <i>via</i> cerebellothalamocortical pathways are essential for a cerebellar cognitive and motor functions. Cerebellothalamic projections were long believed target mainly the ventral lateral (VL) and part of the ventral anterior (VA) nuclei, which project to cortical motor and premotor areas. Here we review new insights from detailed tracing studies, which show that projections from the cerebellum to the thalamus are widespread and reach almost every thalamic subnucleus, including nuclei involved in cognitive functions. These new insights into cerebellothalamic pathways beyond the motor thalamus are consistent with the increasing evidence of cerebellar cognitive function. However, the function of cerebellothalamic pathways and how they are involved in the various motor and cognitive functions of the cerebellum is still unknown. We briefly review literature on the role of the thalamus in coordinating the coherence of neuronal oscillations in the neocortex. The coherence of oscillations, which measures the stability of the phase relationship between two oscillations of the same frequency, is considered an indicator of increased functional connectivity between two structures showing coherent oscillations. Through thalamocortical interactions coherence patterns dynamically create and dissolve functional cerebral cortical networks in a task dependent manner. Finally, we review evidence for an involvement of the cerebellum in coordinating coherence of oscillations between cerebral cortical structures. We conclude that cerebellothalamic pathways provide the necessary anatomical substrate for a proposed role of the cerebellum in coordinating neuronal communication between cerebral cortical areas by coordinating the coherence of oscillations.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"17 ","pages":"1126508"},"PeriodicalIF":3.1000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097962/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Systems Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsys.2023.1126508","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

There is general agreement that cerebrocerebellar interactions via cerebellothalamocortical pathways are essential for a cerebellar cognitive and motor functions. Cerebellothalamic projections were long believed target mainly the ventral lateral (VL) and part of the ventral anterior (VA) nuclei, which project to cortical motor and premotor areas. Here we review new insights from detailed tracing studies, which show that projections from the cerebellum to the thalamus are widespread and reach almost every thalamic subnucleus, including nuclei involved in cognitive functions. These new insights into cerebellothalamic pathways beyond the motor thalamus are consistent with the increasing evidence of cerebellar cognitive function. However, the function of cerebellothalamic pathways and how they are involved in the various motor and cognitive functions of the cerebellum is still unknown. We briefly review literature on the role of the thalamus in coordinating the coherence of neuronal oscillations in the neocortex. The coherence of oscillations, which measures the stability of the phase relationship between two oscillations of the same frequency, is considered an indicator of increased functional connectivity between two structures showing coherent oscillations. Through thalamocortical interactions coherence patterns dynamically create and dissolve functional cerebral cortical networks in a task dependent manner. Finally, we review evidence for an involvement of the cerebellum in coordinating coherence of oscillations between cerebral cortical structures. We conclude that cerebellothalamic pathways provide the necessary anatomical substrate for a proposed role of the cerebellum in coordinating neuronal communication between cerebral cortical areas by coordinating the coherence of oscillations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小脑控制丘脑皮层回路的认知功能:途径回顾与拟议机制
人们普遍认为,通过小脑-皮层通路进行的大脑-小脑相互作用对小脑的认知和运动功能至关重要。长期以来,人们一直认为小脑投射的目标主要是腹外侧核(VL)和部分腹前核(VA),它们投射到大脑皮层的运动区和前运动区。在这里,我们回顾了详细追踪研究的新发现,这些研究表明,小脑向丘脑的投射非常广泛,几乎可以到达丘脑的每一个亚核,包括参与认知功能的核团。对运动丘脑以外的小脑丘脑通路的这些新认识与越来越多的小脑认知功能证据相一致。然而,小脑通路的功能及其如何参与小脑的各种运动和认知功能仍是未知数。我们简要回顾了有关丘脑在协调新皮层神经元振荡一致性方面作用的文献。振荡相干性衡量的是两个频率相同的振荡之间相位关系的稳定性,被认为是显示相干振荡的两个结构之间功能连接性增强的指标。通过丘脑皮层的相互作用,相干模式以一种依赖于任务的方式动态地创建和解散大脑皮层功能网络。最后,我们回顾了小脑参与协调大脑皮层结构间振荡一致性的证据。我们的结论是,小脑-丘脑通路为小脑通过协调振荡的一致性来协调大脑皮层区域之间的神经元交流所扮演的角色提供了必要的解剖学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Systems Neuroscience
Frontiers in Systems Neuroscience Neuroscience-Developmental Neuroscience
CiteScore
6.00
自引率
3.30%
发文量
144
审稿时长
14 weeks
期刊介绍: Frontiers in Systems Neuroscience publishes rigorously peer-reviewed research that advances our understanding of whole systems of the brain, including those involved in sensation, movement, learning and memory, attention, reward, decision-making, reasoning, executive functions, and emotions.
期刊最新文献
Dietary omega-3 polyunsaturated fatty acids reduce cytochrome c oxidase in brain white matter and sensorimotor regions while increasing functional interactions between neural systems related to escape behavior in postpartum rats. Modeling saccade reaction time in marmosets: the contribution of earlier visual response and variable inhibition. Corrigendum: The cerebellum and fear extinction: evidence from rodent and human studies. Asymmetry and rehabilitation of the subjective visual vertical in unilateral vestibular hypofunction patients Brain-consistent architecture for imagination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1