Refinement of systemic guinea pig deafening in hearing research: Sensorineural hearing loss induced by co-administration of kanamycin and furosemide via the leg veins.
Wiebke Behrends, Daniel Ahrens, Jens P Bankstahl, Karl-Heinz Esser, Gerrit Paasche, Thomas Lenarz, Verena Scheper
{"title":"Refinement of systemic guinea pig deafening in hearing research: Sensorineural hearing loss induced by co-administration of kanamycin and furosemide via the leg veins.","authors":"Wiebke Behrends, Daniel Ahrens, Jens P Bankstahl, Karl-Heinz Esser, Gerrit Paasche, Thomas Lenarz, Verena Scheper","doi":"10.1177/00236772231167679","DOIUrl":null,"url":null,"abstract":"<p><p>Auditory disabilities have a large impact on the human population worldwide. Research into understanding and treating hearing disabilities has increased significantly in recent years. One of the most relevant animal species in this context is the guinea pig, which has to be deafened to study several of the hearing pathologies and develop novel therapies. Applying kanamycin subcutaneously and furosemide intravenously is a long-established method in hearing research, leading to permanent hearing loss without surgical intervention at the ear. The intravenous application of furosemide requires invasive surgery in the cervical area of the animals to expose the jugular vein, since a relatively large volume (1 ml per 500 g body weight) must be injected over a period of about 2.5 min. We have established a gentler alternative by applying the furosemide by puncture of the leg veins. For this, custom-made cannula-needle devices were built to allow the vein puncture and subsequent slow injection of the furosemide. This approach was tested in 11 guinea pigs through the foreleg via the cephalic antebrachial vein and through the hind leg via the saphenous vein. Frequency-specific hearing thresholds were measured before and after the procedure to verify normal hearing and successful deafening, respectively. The novel approach of systemic deafening was successfully implemented in 10 out of 11 animals. The <i>Vena saphena</i> was best suited to the application. Since the animals' condition, post leg vein application, was better in comparison to animals deafened by exposure of the <i>Vena jugularis</i>, the postulated refinement that reduced animal stress was deemed successful.</p>","PeriodicalId":18013,"journal":{"name":"Laboratory Animals","volume":" ","pages":"631-641"},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory Animals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00236772231167679","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Auditory disabilities have a large impact on the human population worldwide. Research into understanding and treating hearing disabilities has increased significantly in recent years. One of the most relevant animal species in this context is the guinea pig, which has to be deafened to study several of the hearing pathologies and develop novel therapies. Applying kanamycin subcutaneously and furosemide intravenously is a long-established method in hearing research, leading to permanent hearing loss without surgical intervention at the ear. The intravenous application of furosemide requires invasive surgery in the cervical area of the animals to expose the jugular vein, since a relatively large volume (1 ml per 500 g body weight) must be injected over a period of about 2.5 min. We have established a gentler alternative by applying the furosemide by puncture of the leg veins. For this, custom-made cannula-needle devices were built to allow the vein puncture and subsequent slow injection of the furosemide. This approach was tested in 11 guinea pigs through the foreleg via the cephalic antebrachial vein and through the hind leg via the saphenous vein. Frequency-specific hearing thresholds were measured before and after the procedure to verify normal hearing and successful deafening, respectively. The novel approach of systemic deafening was successfully implemented in 10 out of 11 animals. The Vena saphena was best suited to the application. Since the animals' condition, post leg vein application, was better in comparison to animals deafened by exposure of the Vena jugularis, the postulated refinement that reduced animal stress was deemed successful.
期刊介绍:
The international journal of laboratory animal science and welfare, Laboratory Animals publishes peer-reviewed original papers and reviews on all aspects of the use of animals in biomedical research. The journal promotes improvements in the welfare or well-being of the animals used, it particularly focuses on research that reduces the number of animals used or which replaces animal models with in vitro alternatives.