Florian Schuberth, Tamara Schamberger, Mikko Rönkkö, Yide Liu, Jörg Henseler
{"title":"Premature conclusions about the signal-to-noise ratio in structural equation modeling research: A commentary on Yuan and Fang (2023)","authors":"Florian Schuberth, Tamara Schamberger, Mikko Rönkkö, Yide Liu, Jörg Henseler","doi":"10.1111/bmsp.12304","DOIUrl":null,"url":null,"abstract":"<p>In a recent article published in this journal, Yuan and Fang (<i>British Journal of Mathematical and Statistical Psychology</i>, 2023) suggest comparing structural equation modeling (SEM), also known as covariance-based SEM (CB-SEM), estimated by normal-distribution-based maximum likelihood (NML), to regression analysis with (weighted) composites estimated by least squares (LS) in terms of their signal-to-noise ratio (SNR). They summarize their findings in the statement that “[c]ontrary to the common belief that CB-SEM is the preferred method for the analysis of observational data, this article shows that regression analysis via weighted composites yields parameter estimates with much smaller standard errors, and thus corresponds to greater values of the [SNR].” In our commentary, we show that Yuan and Fang have made several incorrect assumptions and claims. Consequently, we recommend that empirical researchers not base their methodological choice regarding CB-SEM and regression analysis with composites on the findings of Yuan and Fang as these findings are premature and require further research.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bmsp.12304","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12304","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
In a recent article published in this journal, Yuan and Fang (British Journal of Mathematical and Statistical Psychology, 2023) suggest comparing structural equation modeling (SEM), also known as covariance-based SEM (CB-SEM), estimated by normal-distribution-based maximum likelihood (NML), to regression analysis with (weighted) composites estimated by least squares (LS) in terms of their signal-to-noise ratio (SNR). They summarize their findings in the statement that “[c]ontrary to the common belief that CB-SEM is the preferred method for the analysis of observational data, this article shows that regression analysis via weighted composites yields parameter estimates with much smaller standard errors, and thus corresponds to greater values of the [SNR].” In our commentary, we show that Yuan and Fang have made several incorrect assumptions and claims. Consequently, we recommend that empirical researchers not base their methodological choice regarding CB-SEM and regression analysis with composites on the findings of Yuan and Fang as these findings are premature and require further research.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.