Julia Y Kam, Tina Cheng, Danielle C Garland, Warwick J Britton, David M Tobin, Stefan H Oehlers
{"title":"Inhibition of infection-induced vascular permeability modulates host leukocyte recruitment to Mycobacterium marinum granulomas in zebrafish.","authors":"Julia Y Kam, Tina Cheng, Danielle C Garland, Warwick J Britton, David M Tobin, Stefan H Oehlers","doi":"10.1093/femspd/ftac009","DOIUrl":null,"url":null,"abstract":"<p><p>Mycobacterial granuloma formation involves significant stromal remodeling including the growth of leaky, granuloma-associated vasculature. These permeable blood vessels aid mycobacterial growth, as antiangiogenic or vascular normalizing therapies are beneficial host-directed therapies in preclinical models of tuberculosis across host-mycobacterial pairings. Using the zebrafish-Mycobacterium marinum infection model, we demonstrate that vascular normalization by inhibition of vascular endothelial protein tyrosine phosphatase (VE-PTP) decreases granuloma hypoxia, the opposite effect of hypoxia-inducing antiangiogenic therapy. Inhibition of VE-PTP decreased neutrophil recruitment to granulomas in adult and larval zebrafish, and decreased the proportion of neutrophils that extravasated distal to granulomas. Furthermore, VE-PTP inhibition increased the accumulation of T cells at M. marinum granulomas. Our study provides evidence that, similar to the effect in solid tumors, vascular normalization during mycobacterial infection increases the T cell:neutrophil ratio in lesions which may be correlates of protective immunity.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"80 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053305/pdf/ftac009.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens and disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/femspd/ftac009","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mycobacterial granuloma formation involves significant stromal remodeling including the growth of leaky, granuloma-associated vasculature. These permeable blood vessels aid mycobacterial growth, as antiangiogenic or vascular normalizing therapies are beneficial host-directed therapies in preclinical models of tuberculosis across host-mycobacterial pairings. Using the zebrafish-Mycobacterium marinum infection model, we demonstrate that vascular normalization by inhibition of vascular endothelial protein tyrosine phosphatase (VE-PTP) decreases granuloma hypoxia, the opposite effect of hypoxia-inducing antiangiogenic therapy. Inhibition of VE-PTP decreased neutrophil recruitment to granulomas in adult and larval zebrafish, and decreased the proportion of neutrophils that extravasated distal to granulomas. Furthermore, VE-PTP inhibition increased the accumulation of T cells at M. marinum granulomas. Our study provides evidence that, similar to the effect in solid tumors, vascular normalization during mycobacterial infection increases the T cell:neutrophil ratio in lesions which may be correlates of protective immunity.
期刊介绍:
Pathogens and Disease publishes outstanding primary research on hypothesis- and discovery-driven studies on pathogens, host-pathogen interactions, host response to infection and their molecular and cellular correlates. It covers all pathogens – eukaryotes, prokaryotes, and viruses – and includes zoonotic pathogens and experimental translational applications.