A special issue of Essays in Biochemistry on current advances about CAZymes and their impact and key role in human health and environment.

IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Essays in biochemistry Pub Date : 2023-04-18 DOI:10.1042/EBC20230004
Mirjam Czjzek, Elizabeth Ficko-Blean, Jean-Guy Berrin
{"title":"A special issue of Essays in Biochemistry on current advances about CAZymes and their impact and key role in human health and environment.","authors":"Mirjam Czjzek,&nbsp;Elizabeth Ficko-Blean,&nbsp;Jean-Guy Berrin","doi":"10.1042/EBC20230004","DOIUrl":null,"url":null,"abstract":"<p><p>Carbohydrate active enzymes (CAZymes) and their biochemical characterization have been the subject of extensive research over the past ten years due to their importance to carbohydrate metabolism in different biological contexts. For instance, the understanding that 'polysaccharide utilizing loci' (PUL) systems hosted by specific 'carbohydrate degraders' in the intestinal microbiota play key roles in health and disease, such as Crohn's disease, ulcerative colitis or colorectal cancer to name the most well-characterized, has led to an outstanding effort in trying to decipher the molecular mechanisms by which these processes are organized and regulated. The past 10 years has also seen the expansion of CAZymes with auxiliary activities, such as lytic polysaccharide monooxygenases (LPMOs) or even sulfatases, and interest has grown in general about the enzymes needed to remove the numerous decorations and modifications of complex biomass, such as carbohydrate esterases (CE). Today, the characterization of these 'modifying' enzymes allows us to tackle a much more complex biomass, which presents sulfations, methylations, acetylations or interconnections with lignin. This special issue about CAZyme biochemistry covers all these aspects, ranging from implications in disease to environmental and biotechnological impact, with a varied collection of twenty-four review articles providing current biochemical, structural and mechanistic insights into their respective topics.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20230004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbohydrate active enzymes (CAZymes) and their biochemical characterization have been the subject of extensive research over the past ten years due to their importance to carbohydrate metabolism in different biological contexts. For instance, the understanding that 'polysaccharide utilizing loci' (PUL) systems hosted by specific 'carbohydrate degraders' in the intestinal microbiota play key roles in health and disease, such as Crohn's disease, ulcerative colitis or colorectal cancer to name the most well-characterized, has led to an outstanding effort in trying to decipher the molecular mechanisms by which these processes are organized and regulated. The past 10 years has also seen the expansion of CAZymes with auxiliary activities, such as lytic polysaccharide monooxygenases (LPMOs) or even sulfatases, and interest has grown in general about the enzymes needed to remove the numerous decorations and modifications of complex biomass, such as carbohydrate esterases (CE). Today, the characterization of these 'modifying' enzymes allows us to tackle a much more complex biomass, which presents sulfations, methylations, acetylations or interconnections with lignin. This special issue about CAZyme biochemistry covers all these aspects, ranging from implications in disease to environmental and biotechnological impact, with a varied collection of twenty-four review articles providing current biochemical, structural and mechanistic insights into their respective topics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
《生物化学论文》的特刊,关于酶的最新进展及其对人类健康和环境的影响和关键作用。
由于碳水化合物活性酶(CAZymes)在不同生物环境下对碳水化合物代谢的重要作用,其生物化学特性在过去十年中得到了广泛的研究。例如,理解肠道微生物群中特定“碳水化合物降解物”宿主的“利用位点的多糖”(PUL)系统在健康和疾病中发挥关键作用,如克罗恩病、溃疡性结肠炎或结肠直肠癌等最具特征的疾病,已经导致了试图破译这些过程组织和调节的分子机制的杰出努力。在过去的10年里,具有辅助活性的酶也得到了扩展,如多糖单加氧酶(LPMOs)甚至硫酸酯酶,人们对去除复杂生物质的许多修饰和修饰所需的酶(如碳水化合物酯酶(CE))的兴趣也在普遍增长。今天,这些“修饰”酶的特性使我们能够处理更复杂的生物质,它呈现出磺化,甲基化,乙酰化或与木质素的相互连接。本期关于CAZyme生物化学的特刊涵盖了所有这些方面,从疾病的影响到环境和生物技术的影响,包括24篇不同的综述文章,提供了各自主题的当前生化,结构和机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Essays in biochemistry
Essays in biochemistry 生物-生化与分子生物学
CiteScore
10.50
自引率
0.00%
发文量
105
审稿时长
>12 weeks
期刊介绍: Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic. Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points. Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place. Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.
期刊最新文献
Considerations for prioritising clinical research using bacteriophage. Phage diversity in One Health. Understanding metabolic plasticity at single cell resolution. Translational research priorities for bacteriophage therapeutics. Catalytic mechanism and kinetics of malate dehydrogenase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1