Enzymatic systems for carbohydrate utilization and biosynthesis in Xanthomonas and their role in pathogenesis and tissue specificity.

IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Essays in biochemistry Pub Date : 2023-04-18 DOI:10.1042/EBC20220128
Priscila O Giuseppe, Isabela M Bonfim, Mario T Murakami
{"title":"Enzymatic systems for carbohydrate utilization and biosynthesis in Xanthomonas and their role in pathogenesis and tissue specificity.","authors":"Priscila O Giuseppe,&nbsp;Isabela M Bonfim,&nbsp;Mario T Murakami","doi":"10.1042/EBC20220128","DOIUrl":null,"url":null,"abstract":"<p><p>Xanthomonas plant pathogens can infect hundreds of agricultural plants. These bacteria exploit sophisticated molecular strategies based on multiple secretion systems and their associated virulence factors to overcome the plant defenses, including the physical barrier imposed by the plant cell walls and the innate immune system. Xanthomonads are equipped with a broad and diverse repertoire of Carbohydrate-Active enZymes (CAZymes), which besides enabling the utilization of complex plant carbohydrates as carbon and energy source, can also play pivotal roles in virulence and bacterial lifestyle in the host. CAZymes in xanthomonads are often organized in multienzymatic systems similar to the Polysaccharide Utilization Loci (PUL) from Bacteroidetes known as CUT systems (from Carbohydrate Utilization systems associated with TonB-dependent transporters). Xanthomonas bacteria are also recognized to synthesize distinct exopolysaccharides including xanthan gum and untapped exopolysaccharides associated with biofilm formation. Here, we summarize the current knowledge on the multifaceted roles of CAZymes in xanthomonads, connecting their function with pathogenicity and tissue specificity.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"455-470"},"PeriodicalIF":5.6000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20220128","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Xanthomonas plant pathogens can infect hundreds of agricultural plants. These bacteria exploit sophisticated molecular strategies based on multiple secretion systems and their associated virulence factors to overcome the plant defenses, including the physical barrier imposed by the plant cell walls and the innate immune system. Xanthomonads are equipped with a broad and diverse repertoire of Carbohydrate-Active enZymes (CAZymes), which besides enabling the utilization of complex plant carbohydrates as carbon and energy source, can also play pivotal roles in virulence and bacterial lifestyle in the host. CAZymes in xanthomonads are often organized in multienzymatic systems similar to the Polysaccharide Utilization Loci (PUL) from Bacteroidetes known as CUT systems (from Carbohydrate Utilization systems associated with TonB-dependent transporters). Xanthomonas bacteria are also recognized to synthesize distinct exopolysaccharides including xanthan gum and untapped exopolysaccharides associated with biofilm formation. Here, we summarize the current knowledge on the multifaceted roles of CAZymes in xanthomonads, connecting their function with pathogenicity and tissue specificity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黄单胞菌碳水化合物利用和生物合成的酶系统及其在发病机制和组织特异性中的作用。
黄单胞菌植物病原体可以感染数百种农业植物。这些细菌利用基于多种分泌系统及其相关毒力因子的复杂分子策略来克服植物防御,包括植物细胞壁和先天免疫系统施加的物理屏障。黄单胞菌具有广泛而多样的碳水化合物活性酶(CAZymes),除了能够利用复杂的植物碳水化合物作为碳和能量来源外,还可以在宿主的毒力和细菌生活方式中发挥关键作用。黄单胞菌中的酶通常在多酶系统中组织,类似于拟杆菌门的多糖利用位点(PUL),称为CUT系统(来自与tonb依赖性转运体相关的碳水化合物利用系统)。黄单胞菌也被认为可以合成不同的外多糖,包括黄原胶和与生物膜形成相关的未开发的外多糖。在这里,我们总结了目前关于CAZymes在黄单胞菌中的多方面作用的知识,将其功能与致病性和组织特异性联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Essays in biochemistry
Essays in biochemistry 生物-生化与分子生物学
CiteScore
10.50
自引率
0.00%
发文量
105
审稿时长
>12 weeks
期刊介绍: Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic. Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points. Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place. Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.
期刊最新文献
NUAK: never underestimate a kinase. New developments in AMPK and mTORC1 cross-talk. How mass spectrometry can be exploited to study AMPK. New concepts in the roles of AMPK in adipocyte stem cell biology. Does AMPK bind glycogen in skeletal muscle or is the relationship correlative?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1