Diabetes disease prediction system using HNB classifier based on discretization method.

IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Integrative Bioinformatics Pub Date : 2023-02-23 eCollection Date: 2023-03-01 DOI:10.1515/jib-2021-0037
Bassam Abdo Al-Hameli, AbdulRahman A Alsewari, Shadi S Basurra, Jagdev Bhogal, Mohammed A H Ali
{"title":"Diabetes disease prediction system using HNB classifier based on discretization method.","authors":"Bassam Abdo Al-Hameli, AbdulRahman A Alsewari, Shadi S Basurra, Jagdev Bhogal, Mohammed A H Ali","doi":"10.1515/jib-2021-0037","DOIUrl":null,"url":null,"abstract":"<p><p>Diagnosing diabetes early is critical as it helps patients live with the disease in a healthy way - through healthy eating, taking appropriate medical doses, and making patients more vigilant in their movements/activities to avoid wounds that are difficult to heal for diabetic patients. Data mining techniques are typically used to detect diabetes with high confidence to avoid misdiagnoses with other chronic diseases whose symptoms are similar to diabetes. Hidden Naïve Bayes is one of the algorithms for classification, which works under a data-mining model based on the assumption of conditional independence of the traditional Naïve Bayes. The results from this research study, which was conducted on the Pima Indian Diabetes (PID) dataset collection, show that the prediction accuracy of the HNB classifier achieved 82%. As a result, the discretization method increases the performance and accuracy of the HNB classifier.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2021-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diagnosing diabetes early is critical as it helps patients live with the disease in a healthy way - through healthy eating, taking appropriate medical doses, and making patients more vigilant in their movements/activities to avoid wounds that are difficult to heal for diabetic patients. Data mining techniques are typically used to detect diabetes with high confidence to avoid misdiagnoses with other chronic diseases whose symptoms are similar to diabetes. Hidden Naïve Bayes is one of the algorithms for classification, which works under a data-mining model based on the assumption of conditional independence of the traditional Naïve Bayes. The results from this research study, which was conducted on the Pima Indian Diabetes (PID) dataset collection, show that the prediction accuracy of the HNB classifier achieved 82%. As a result, the discretization method increases the performance and accuracy of the HNB classifier.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于离散化方法的 HNB 分类器的糖尿病疾病预测系统。
早期诊断糖尿病至关重要,因为这有助于患者以健康的方式与疾病共存--通过健康饮食、服用适当的药物剂量,并使患者在行动/活动中提高警惕,以避免糖尿病患者难以愈合的伤口。数据挖掘技术通常用于高置信度地检测糖尿病,以避免误诊为症状与糖尿病相似的其他慢性疾病。隐奈夫贝叶斯是分类算法之一,它是基于传统奈夫贝叶斯条件独立性假设的数据挖掘模型。这项研究是在皮马印度糖尿病(PID)数据集上进行的,结果表明 HNB 分类器的预测准确率达到了 82%。因此,离散化方法提高了 HNB 分类器的性能和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Bioinformatics
Journal of Integrative Bioinformatics Medicine-Medicine (all)
CiteScore
3.10
自引率
5.30%
发文量
27
审稿时长
12 weeks
期刊最新文献
A roadmap for a middleware as a federation service for integrative data retrieval of agricultural data. International symposium on integrative bioinformatics 2024 - editorial. The potential of Mitragyna speciosa leaves as a natural source of antioxidants for disease prevention. MCMVDRP: a multi-channel multi-view deep learning framework for cancer drug response prediction. Leonhard Med, a trusted research environment for processing sensitive research data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1