Keri Csencsits-Smith, Krill Grushin, Svetla Stoilova-McPhie
{"title":"Binding of Factor VIII to Lipid Nanodiscs Increases its Clotting Function in a Mouse Model of Hemophilia A.","authors":"Keri Csencsits-Smith, Krill Grushin, Svetla Stoilova-McPhie","doi":"10.4172/2155-9864.1000325","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hemophilia A is a congenital bleeding disorder caused by defective or deficient factor VIII (FVIII). The active form of FVIII is the co-factor for the serine protease factor IXa (FIXa) in the membrane-bound intrinsic tenase (FVIIIa-FIXa) complex. The assembly of the FVIIIa-FIXa complex on the activated platelet surface is critical for successful blood clotting.</p><p><strong>Objectives: </strong>To characterize the role of lipid nanodiscs (ND) for on FVIII function in vivo and test the lipid ND as a delivery system for FVIII. To evaluate the potential of binding recombinant FVIII to ND as improved treatment for Hemophilia A.</p><p><strong>Methods: </strong>Recombinant porcine FVIII (rpFVIII) was expressed and characterized in solution, and when bound to ND. The rpFVIII, ND and rpFVIII-ND complexes were characterized via transmission electron microscopy. Functional studies were carried out using aPTT tests and time resolved tail snip studies of hemophilic mice.</p><p><strong>Results: </strong>Functional rpFVIII was successfully assembled on lipid ND. When injected in hemophilic mice, the rpFVIII-ND complexes showed a pronounced pro-coagulant effect, which was stronger than that of rpFVIII alone. While injection of the ND alone showed a pro-coagulant effect this effect was not additive, implying that the rpFVIII-ND complexes have a synergistic effect on the clotting process in hemophilic mice.</p><p><strong>Conclusions: </strong>Binding of rpFVIII to ND prior to its injection in hemophilic mice significantly improves the therapeutic function of the protein. This represents a meaningful step towards a new approach to modulate blood coagulation at the membrane-bound FVIII level and the assembly of the intrinsic tenase complex.</p>","PeriodicalId":73627,"journal":{"name":"Journal of blood disorders & transfusion","volume":"6 6","pages":"325"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2155-9864.1000325","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of blood disorders & transfusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-9864.1000325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Background: Hemophilia A is a congenital bleeding disorder caused by defective or deficient factor VIII (FVIII). The active form of FVIII is the co-factor for the serine protease factor IXa (FIXa) in the membrane-bound intrinsic tenase (FVIIIa-FIXa) complex. The assembly of the FVIIIa-FIXa complex on the activated platelet surface is critical for successful blood clotting.
Objectives: To characterize the role of lipid nanodiscs (ND) for on FVIII function in vivo and test the lipid ND as a delivery system for FVIII. To evaluate the potential of binding recombinant FVIII to ND as improved treatment for Hemophilia A.
Methods: Recombinant porcine FVIII (rpFVIII) was expressed and characterized in solution, and when bound to ND. The rpFVIII, ND and rpFVIII-ND complexes were characterized via transmission electron microscopy. Functional studies were carried out using aPTT tests and time resolved tail snip studies of hemophilic mice.
Results: Functional rpFVIII was successfully assembled on lipid ND. When injected in hemophilic mice, the rpFVIII-ND complexes showed a pronounced pro-coagulant effect, which was stronger than that of rpFVIII alone. While injection of the ND alone showed a pro-coagulant effect this effect was not additive, implying that the rpFVIII-ND complexes have a synergistic effect on the clotting process in hemophilic mice.
Conclusions: Binding of rpFVIII to ND prior to its injection in hemophilic mice significantly improves the therapeutic function of the protein. This represents a meaningful step towards a new approach to modulate blood coagulation at the membrane-bound FVIII level and the assembly of the intrinsic tenase complex.