Cooper M Warne, Salman I Essajee, Selina M Tucker, C Alberto Figueroa, Daniel A Beard, Gregory M Dick, Johnathan D Tune
{"title":"Oxygen-sensing pathways below autoregulatory threshold act to sustain myocardial oxygen delivery during reductions in perfusion pressure.","authors":"Cooper M Warne, Salman I Essajee, Selina M Tucker, C Alberto Figueroa, Daniel A Beard, Gregory M Dick, Johnathan D Tune","doi":"10.1007/s00395-023-00985-4","DOIUrl":null,"url":null,"abstract":"<p><p>The coronary circulation has an innate ability to maintain constant blood flow over a wide range of perfusion pressures. However, the mechanisms responsible for coronary autoregulation remain a fundamental and highly contested question. This study interrogated the local metabolic hypothesis of autoregulation by testing the hypothesis that hypoxemia-induced exaggeration of the metabolic error signal improves the autoregulatory response. Experiments were performed on open-chest anesthetized swine during stepwise changes in coronary perfusion pressure (CPP) from 140 to 40 mmHg under normoxic (n = 15) and hypoxemic (n = 8) conditions, in the absence and presence of dobutamine-induced increases in myocardial oxygen consumption (MVO<sub>2</sub>) (n = 5-7). Hypoxemia (PaO<sub>2</sub> < 40 mmHg) decreased coronary venous PO<sub>2</sub> (CvPO<sub>2</sub>) ~ 30% (P < 0.001) and increased coronary blood flow ~ 100% (P < 0.001), sufficient to maintain myocardial oxygen delivery (P = 0.14) over a wide range of CPPs. Autoregulatory responsiveness during hypoxemia-induced reductions in CvPO<sub>2</sub> were associated with increases of autoregulatory gain (Gc; P = 0.033) but not slope (P = 0.585) over a CPP range of 120 to 60 mmHg. Preservation of autoregulatory Gc (P = 0.069) and slope (P = 0.264) was observed during dobutamine administration ± hypoxemia. Reductions in coronary resistance in response to decreases in CPP predominantly occurred below CvPO<sub>2</sub> values of ~ 25 mmHg, irrespective of underlying vasomotor reserve. These findings support the presence of an autoregulatory threshold under which oxygen-sensing pathway(s) act to preserve sufficient myocardial oxygen delivery as CPP is reduced during increases in MVO<sub>2</sub> and/or reductions in arterial oxygen content.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10797605/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-023-00985-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The coronary circulation has an innate ability to maintain constant blood flow over a wide range of perfusion pressures. However, the mechanisms responsible for coronary autoregulation remain a fundamental and highly contested question. This study interrogated the local metabolic hypothesis of autoregulation by testing the hypothesis that hypoxemia-induced exaggeration of the metabolic error signal improves the autoregulatory response. Experiments were performed on open-chest anesthetized swine during stepwise changes in coronary perfusion pressure (CPP) from 140 to 40 mmHg under normoxic (n = 15) and hypoxemic (n = 8) conditions, in the absence and presence of dobutamine-induced increases in myocardial oxygen consumption (MVO2) (n = 5-7). Hypoxemia (PaO2 < 40 mmHg) decreased coronary venous PO2 (CvPO2) ~ 30% (P < 0.001) and increased coronary blood flow ~ 100% (P < 0.001), sufficient to maintain myocardial oxygen delivery (P = 0.14) over a wide range of CPPs. Autoregulatory responsiveness during hypoxemia-induced reductions in CvPO2 were associated with increases of autoregulatory gain (Gc; P = 0.033) but not slope (P = 0.585) over a CPP range of 120 to 60 mmHg. Preservation of autoregulatory Gc (P = 0.069) and slope (P = 0.264) was observed during dobutamine administration ± hypoxemia. Reductions in coronary resistance in response to decreases in CPP predominantly occurred below CvPO2 values of ~ 25 mmHg, irrespective of underlying vasomotor reserve. These findings support the presence of an autoregulatory threshold under which oxygen-sensing pathway(s) act to preserve sufficient myocardial oxygen delivery as CPP is reduced during increases in MVO2 and/or reductions in arterial oxygen content.
期刊介绍:
Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards.
Basic Research in Cardiology regularly receives articles from the fields of
- Molecular and Cellular Biology
- Biochemistry
- Biophysics
- Pharmacology
- Physiology and Pathology
- Clinical Cardiology