Using chemical and biological data to predict drug toxicity

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-04-01 DOI:10.1016/j.slasd.2022.12.003
Anika Liu , Srijit Seal , Hongbin Yang , Andreas Bender
{"title":"Using chemical and biological data to predict drug toxicity","authors":"Anika Liu ,&nbsp;Srijit Seal ,&nbsp;Hongbin Yang ,&nbsp;Andreas Bender","doi":"10.1016/j.slasd.2022.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>Various sources of information can be used to better understand and predict compound activity and safety-related endpoints, including biological data such as gene expression and cell morphology. In this review, we first introduce types of chemical, <em>in vitro</em> and <em>in vivo</em> information that can be used to describe compounds and adverse effects. We then explore how compound descriptors based on chemical structure or biological perturbation response can be used to predict safety-related endpoints, and how especially biological data can help us to better understand adverse effects mechanistically. Overall, the described applications demonstrate how large-scale biological information presents new opportunities to anticipate and understand the biological effects of compounds, and how this can support predictive toxicology and drug discovery projects.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555222137147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8

Abstract

Various sources of information can be used to better understand and predict compound activity and safety-related endpoints, including biological data such as gene expression and cell morphology. In this review, we first introduce types of chemical, in vitro and in vivo information that can be used to describe compounds and adverse effects. We then explore how compound descriptors based on chemical structure or biological perturbation response can be used to predict safety-related endpoints, and how especially biological data can help us to better understand adverse effects mechanistically. Overall, the described applications demonstrate how large-scale biological information presents new opportunities to anticipate and understand the biological effects of compounds, and how this can support predictive toxicology and drug discovery projects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用化学和生物数据预测药物毒性
各种信息来源可用于更好地了解和预测化合物活性和安全性相关终点,包括基因表达和细胞形态等生物学数据。在这篇综述中,我们首先介绍了可用于描述化合物和不良反应的化学、体外和体内信息的类型。然后,我们探索了如何使用基于化学结构或生物扰动反应的化合物描述符来预测安全性相关终点,以及特别是生物数据如何帮助我们更好地从机制上理解不良影响。总的来说,所描述的应用证明了大规模生物信息如何为预测和理解化合物的生物效应提供新的机会,以及这如何支持预测毒理学和药物发现项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1